R&D Activities at IN2P3 for a Vertex Detector suited to ILC

M. Winter (PICSEL group of IPHC-Strasbourg)

CONSEIL SCIENTIFIQUE, IN2P3, 30-31 January 2014

Outline

- Requirements and topics addressed
- Status of CPS development for running at $\sqrt{s} \lesssim 500$ GeV (0.35 μm process)
- Improvements coming from 0.18 μm CMOS process
 \[\rightarrow \text{fast CMOS sensor (AROM) with μs level timestamping} \]
- 2-sided ladder developments
- Plans for the coming years
- Summary
ILC Vertexing Performance Goals

- **CMOS Pixel Sensors (CPS) pioneering devt triggered by ILC vertex detector requirements:**
 - unprecedented granularity & material budget (very low power)
 - much less demanding running conditions than at LHC
 - alleviated read-out speed & radiation tolerance requests
 - ILC duty cycle $\sim 1/200$
 - power saving by power pulsing sub-systems

- **Vertexing goal:**
 - achieve high efficiency & purity flavour tagging
 - charm & tau, jet-flavour !!!
 - $\sigma_{R\phi,Z} \leq 5 \oplus 10/p \cdot \sin^{3/2} \theta \ \mu m$
 - LHC: $\sigma_{R\phi} \approx 12 \oplus 70/p \cdot \sin^{3/2} \theta$
 - Comparison: $\sigma_{R\phi,Z}$ (ILD) with VXD made of ATLAS-IBL or ILD-VXD pixels
A complex set of strongly correlated issues:

- **Charged particle sensor technology:**
 - highly granular, thin, low power, swift pixel sensors

- **Micro-electronics:**
 - highly integrated, low power, SEE safe, r.o. \(\mu \)circuits

- **Electronics:**
 - high data transfer bandwidth (no trigger), some SEE tolerable
 - low mass power delivery, allowing for power cycling

- **Mechanics:**
 - rigid, ultra-light, heat but not electrical conductive, mechanical supports, possibly with \(C_{\Delta t} \approx C_{Si}^{\Delta t} \)
 - very low mass, preferably air, cooling system
 - micron level alignment capability

- **EM compliance:**
 - power cycling in high B field \(\Rightarrow F(\text{Lorentz}) \)
 - higher mode beam wakefield disturbance \(\Rightarrow \) pick-up noise?

- **Radiation load and SEE compliance at \(T_{room} \)**
 - \(\Rightarrow \) reduced material budget
Topics Addressed by the R&D

- **Vertex Detector Concept**:
 - Cylindrical geometry based on 3 concentric 2-sided layers
 - Layers equipped with 3 different CMOS Pixel Sensors (CPS)

- **Pixel Sensor Development**:
 - Exploit CPS potential & IPHC expertise
 - R&D performed in synergy with other applications
 - EUDET-BT, STAR, ALICE, CBM, ...
 - CPS \equiv unique technology being simultaneously granular, thin, integrating full FEE, industrial & cheap
 - Address trade-off btw spatial resolution & read-out speed

- **Double-Sided Ladder Development**:
 - Develop concept of 2-sided ladder using 50 \(\mu m \) thin CPS
 - Develop concept of mini-vectors providing high spatial resolution & time stamping
 - Address the issue of high precision alignment & power cycling in high magnetic field
DEVELOPMENT OF CMOS SENSORS

STAR-PXL

HALF-BARREL:

- 20 ladders (0.37% X_0)
- 200 sensors
- 180 $\cdot 10^6$ pixels
- Air flow cooling:
 $T \lesssim 35^\circ C$
- $\sigma_{sp} < 4 \mu m$
- Rad. load \gg ILC values
- $t_{r.o.} \simeq 190 \mu s$
 \rightarrow ILC : $O(10) \mu s$

Installed in January 2014
State-of-the-Art: MIMOSA-28 for the STAR-PXL

• Main characteristics of ULTIMATE (≡ MIMOSA-28):
 * rolling shutter read-out derived from EUDET BT chip: MIMOSA-26
 * 0.35 \(\mu m \) process with high-resistivity epitaxial layer
 * column // architecture with in-pixel cDS & amplification
 * end-of-column discrimination & binary charge encoding
 * on-chip zero-suppression
 * active area: 960 columns of 928 pixels (19.9 \(\times \) 19.2 mm\(^2\))
 * pitch: 20.7 \(\mu m \) \(\rightarrow \) 0.9 million pixels
 \(\leftarrow \) charge sharing \(\Rightarrow \) \(\sigma_{sp} \gtrsim 3.5 \mu m \)
 * JTAG programmable
 * \(t_{r.o.} \lesssim 200 \mu s \) (\(\sim 5 \times 10^3 \) frames/s) \(\Rightarrow \) suited to \(> 10^6 \) part./cm\(^2\)/s
 * 2 outputs at 160 MHz
 * \(\sim 150 \) mW/cm\(^2\) power consumption
 * \(N \lesssim 15 \) e\(^-\) ENC at 30-35\(^\circ\)C
 * \(\epsilon_{det} \) versus fake hit rate
 * Radiation tolerance: \(3 \cdot 10^{12} n_{eq}/cm^2 \) & 150 kRad at 30-35\(^\circ\)C
 * Detector construction under way (40 ladders made of 10 sensors)

▷▷▷ 1st step: Commissioning of 3/10 of detector completed
 at RHIC with pp collisions in May-June 2013

▷▷▷ next step: Start of physics with full detector in Feb. 2014
Two types of CMOS Pixel Sensors:

- **Inner layers** ($\sim 300 \text{ cm}^2$):
 - Priority to read-out speed & spatial resolution
 - Small pixels ($16 \times 16 / 80 \mu m^2$)
 - With binary charge encoding
 - $t_{r.o.} \sim 50 / 10 \mu s$; $\sigma_{sp} \lesssim 3 / 6 \mu m$

- **Outer layers** ($\sim 3000 \text{ cm}^2$):
 - Priority to power consumption and good resolution
 - Large pixels ($35 \times 35 \mu m^2$)
 - With 3-4 bits charge encoding
 - $t_{r.o.} \sim 100 \mu s$; $\sigma_{sp} \lesssim 4 \mu m$

2-sided ladder concept for inner layer:

- PLUME collaboration

- **Square pixels** ($16 \times 16 \mu m^2$)
 - On internal ladder face ($\sigma_{sp} < 3 \mu m$)

- **Elongated pixels** ($16 \times 64/80 \mu m^2$)
 - On external ladder face ($t_{r.o.} \sim 10 \mu s$)

Total VXD instantaneous/average power $< 600/12$ W (0.18 μm process)
CMOS Pixel Sensors for the ILD-VXD (2/3)

• From the STAR-PXL to the ILC-VXD:

<table>
<thead>
<tr>
<th>Detector</th>
<th>σ_{sp}</th>
<th>t_{int}</th>
<th>Dose (30° C)</th>
<th>Fluence (30° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAR-PXL</td>
<td>$\gtrsim 3.5 , \mu m$</td>
<td>190 μs</td>
<td>150 kRad</td>
<td>$3 \cdot 10^{12} n_{eq}/cm^2$</td>
</tr>
<tr>
<td>ILD-VXD/In</td>
<td>$< 3 , \mu m$</td>
<td>50/10 μs</td>
<td>< 100 kRad</td>
<td>$\lesssim 10^{11} n_{eq}/cm^2$</td>
</tr>
<tr>
<td>ILD-VXD/Out</td>
<td>$\lesssim 4 , \mu m$</td>
<td>100 μs</td>
<td>< 10 kRad</td>
<td>$\lesssim 10^{10} n_{eq}/cm^2$</td>
</tr>
</tbody>
</table>

• Final ”500 GeV” CPS prototypes: fab. in Winter 2011/12 (0.35 μm process for economic reasons)

※ MIMOSA-30: inner layer prototype with 2-sided read-out
 → one side: 256 pixels ($16 \times 16 \, \mu m^2$)
 other side: 64 pixels ($16 \times 64 \, \mu m^2$)

※ MIMOSA-31: outer layer prototype
 → 48 col. of 64 pixels ($35 \times 35 \, \mu m^2$)
 ended with 4-bit ADC
CMOS Pixel Sensors for the ILD-VXD (3/3)

- **MIMOSA-30**: prototype for ILD-VXD innermost layer
 - 0.35 CMOS μm process with high-resistivity epitaxy
 - in-pixel CDS, rolling shutter read-out, binary sparsified output
 - columns length \sim final sensor (4-5 mm long)
 - high resolution side: pixels of $16 \times 16 \mu m^2$ \Rightarrow expect $\sigma_{sp} < 3 \mu m$
 - 128 columns (discrim) & 8 col. (analog) of 256 rows
 - read-out time $\lesssim 50 \mu s$
 - time stamping side: pixels of $16 \times 64 \mu m^2$ $\Rightarrow t_{r.o.} \sim 10 \mu s$
 - (expect $\sigma_{sp} \sim 6 \mu m$)
 - 128 columns (discrim) and 8 col. (analog) of 64 rows
 - lab tests positive: $N \sim 15 \ e^-$ ENC & discrim. all OK for $t_{r.o.} = 10 \mu s$
 - beam tests (CERN-SPS) in July ’12 $\Rightarrow \sigma_{sp}$

- **MIMOSA-31**: prototype for ILD-VXD outer layers
 - pixels of $35 \times 35 \mu m^2$ (power saving)
 - 48 columns of 64 pixels ended with 4-bit ADC (1/10 of full scale chip)
 \longleftrightarrow expect $\sigma_{sp} \lesssim 3.5 \mu m$
 - $t_{r.o.} \sim 10 \mu s$ (1/10 of full scale chip) $\Rightarrow \sim 100 \mu s$
Motivations for faster read-out:

- robustness w.r.t. predicted 500 GeV BG rate (keep inner radius small, ...)
- standalone inner tracking capability (e.g. soft tracks)
- compatibility with high-energy running: expected beam BG at $\sqrt{s} \gtrsim 1 \text{ TeV} \simeq 3–5 \times \text{BG (500 GeV)}$

How to accelerate the elongated pixel read-out

- elongated pixel dimensions allow for in-pixel discri. $\Rightarrow \geq 2$ faster r.o.
- read out simultaneously 2 or 4 rows $\Rightarrow 2$-4 faster r.o./side
- subdivide pixel area in 4-8 sub-arrays read out in // $\Rightarrow 2$-4 faster r.o./side
- 0.18 μm process needed: 6-7 ML, design compactness, in-pixel CMOS T, ...
- conservative step: 2 discri./col. end (22μm wide) \Rightarrow simult. 2 row r.o.

Expected VXD performances at 1 TeV (and 0.5 TeV)

<table>
<thead>
<tr>
<th>Layer</th>
<th>σ_{sp}</th>
<th>t_{int}</th>
<th>Occupancy [%]</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIMOSA/AROM</td>
<td>MIMOSA/AROM</td>
<td>1 TeV (0.5 TeV)</td>
<td>inst./average</td>
</tr>
<tr>
<td>VXD-1</td>
<td>3 / 5-6 μm</td>
<td>50 / 2 μs (10 μs)</td>
<td>4.5(0.9) / 0.5(0.1)</td>
<td>250/5 W</td>
</tr>
<tr>
<td>VXD-2</td>
<td>4 / 10 μm</td>
<td>100 / 7 μs (100 μs)</td>
<td>1.5(0.3) / 0.2(0.04)</td>
<td>120/2.4 W</td>
</tr>
<tr>
<td>VXD-3</td>
<td>4 / 10 μm</td>
<td>100 / 7 μs (100 μs)</td>
<td>0.3(0.06) / 0.05(0.01)</td>
<td>200/4 W</td>
</tr>
</tbody>
</table>
ALICE-ITS Upgrade

- 2 alternative sensors developed:
 - Baseline: ASTRAL (in-pixel discrim.)
 \[\geq 15 \, \mu s, \, 85 \, \text{mW/cm}^2 \]
 - Back-up: MISTRAL (end-of-col. discrim.)
 \[\geq 30 \, \mu s, \, < 200 \, \text{mW/cm}^2 \]

- All main components validated in 2013:
 - Sensing node properties
 - In-pixel ampli+CDS
 - In-pixel discriminators
 - Rolling-shutter with end-of-col. discrim.
 - Simultaneous 2-row read-out
 - Sparse data scan
 - Programmable chip steering (JTAG)
 \[\rightarrow \text{outcome integrated in ITS-TDR} \]
CPS fabricated in 2012/13 in 0.18 \(\mu m \) Process
- MIMOSA-22THRa1 exposed to ~ 4.4 GeV electrons (DESY) in August 2013

- Analog outputs of 8 test columns (no discr.)

 SNR with HR-18 epitaxy, at T=30°C

 - Noise determination with beamless data taking
 - Ex: S2 (T gate L/W=0.36/1 μm against RTS noise)
 - S1 (T gate L/W=0.36/2 μm against RTS noise)

- Results:

 - Charge collected in seed pixel ≈ 550 e−
 - Detection efficiency of S1 & S2 ≥ 99.5%
 while Fake rate ≤ O(10⁻⁵) for
 Discrimination Thresholds in range ~ 5N → > 10N
 - Mitigation of Fake Hits due to RTS
 noise fluctuations confirmed

 - A few 10⁻³ residual inefficiency may come
 from BT-chip association mismatches
 and non-optimised cluster algorithm
Pixel Optimisation: Epitaxial Layer and Sensing Node

Pixel charge coll. perfo. for HR-18 & VHR-20 (no in-pixel CDS):

- SNR distributions \(\rightarrow\) MPV & low values tail
- \(22 \times 33 \ \mu m^2\) (2T) pixels at \(30^\circ C\)

\[\Rightarrow\] Results:
- only \(\sim 0.1\%\) of cluster seeds exhibit \(SNR \lesssim 7–8\)
- \(SNR(VHR-20) \sim 5\text{-}10\%\) higher than \(SNR(HR-18)\)

Pixel charge coll. perfo. for 2 diff. sensing nodes:

- \(10.9\ \mu m^2\) large sensing diode
- \(8\ \mu m^2\) cross-section sensing diode
 underneath \(10.9\ \mu m^2\) large footprint

\[\Rightarrow\] Results:
- \(8\ \mu m^2\) diode features nearly 20\% higher \(SNR(MPV)\)
 & much less pixels at small \(SNR\) (e.g. \(SNR < 10\))
 \(\Rightarrow\) \(Q_{clus} \simeq 1350/1500\ \text{e}^-\) for \(8/10.9\ \mu m^2\)
 \(\Rightarrow\) marginal charge loss with \(8\ \mu m^2\) diode
- radiation tolerance to \(250\ \text{kRad} & 2.5 \cdot 10^{12} \ n_{eq}/cm^2\) at \(30^\circ C\) OK
Spatial Resolution

- Beam test (analog) data used to simulate binary charge encoding:
 - Apply common SNR cut on all pixels using \(\langle N \rangle \rightarrow \)
 simulate effect of final sensor discriminators
 - Evaluate single point resolution (charge sharing) and
detection efficiency vs discriminator threshold for
 20x20; 22x33; 20x40; 22x66 \(\mu m^2 \) pixels

- Comparison of 0.18 \(\mu m \) technology (\(\geq 1 \ kΩ \cdot cm \))
 with 0.35 \(\mu m \) technology (\(\ll 1 \ kΩ \cdot cm \))

<table>
<thead>
<tr>
<th>Process</th>
<th>Pixel Dim. [(\mu m^2)]</th>
<th>(\sigma_{sp}^{bin} [\mu m])</th>
<th>(> 0.35 \mu m)</th>
<th>(> 0.18 \mu m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35 (\mu m)</td>
<td>20.7 \times 20.7</td>
<td>3.7 \pm 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18 (\mu m)</td>
<td>20 \times 20</td>
<td>3.2 \pm 0.1</td>
<td>(\sim 5)</td>
<td>5.4 \pm 0.1</td>
</tr>
</tbody>
</table>
DEVELOPMENT OF ULTRA-LIGHT DOUBLE-SIDED LADDERS
Sensor Integration in Ultra Light Devices

2-sided ladders with time stamping for the ILD-VXD:

- Manyfold bonus expected from 2-sided ladders: alignment, pointing accuracy (shallow angle), compactness, redundancy, etc.
- Studied by PLUME coll. (Bristol, DESY, IPHC) & AIDA (EU)

→ Pixelated Ladder using Ultra-light Material Embedding

- Square pixels for single point resolution on beam side
- Elongated pixels for 5-50 times shorter r.o. time on other side
- Correlate hits generated by traversing particles
- Expected total material budget $\sim 0.3 \% X_0$

Prototypes fabricated:

- Based on 2×6 MIMOSA-26 sensors mounted on each ladder face
- Mechanical support: 2 mm thick low density SiC foam
- Total material budget $\sim 0.6 \% X_0$
- Beam tests at CERN-SPS (traversing m.i.p.) in Nov. ’11
2-Sided Ladder Beam Test Results

- **PLUME prototype-2010 tested at SPS in Nov. 2011:**
 - Beam telescope: 2 arms, each composed of 2 MIMOSA-26 sensors
 - DUT: 1 PLUME ladder prototype (0.6 % X_0)
 - 6 MIMOSA-26 sensors on each ladder face (> 8 Mpixels)
 - CERN-SPS beam: \gtrsim 100 GeV "π−" beam
 - BT (track extrapolation) resolution on DUT \sim 1.8 μm
 - Studies with PLUME perpendicular and inclined (\sim 36°) w.r.t. beam line
 - Preliminary results (no pick-up observed): combined impact resolution & pointing resolution

- **New PLUME proto. under construction with 0.35 % X_0 (X-sect.) \rightarrow beam tests in Q4/2014 (SPS ?)
CMOS Pixel Sensors (CPS): A Long Term R&D

- **Initial objective**: ILC, with staged performances
 - CPS applied to other experiments with intermediate requirements

EUDET 2006/2010
Beam Telescope

STAR 2013
Solenoidal Tracker at RHIC

ILC > 2020
International Linear Collider

ALICE 2018
A Large Ion Collider Experiment

- EUDET (R&D for ILC, EU project)
- STAR (Heavy Ion physics)
- CBM (Heavy Ion physics)
- ILC (Particle physics)
- HadronPhysics2 (generic R&D, EU project)
- AIDA (generic R&D, EU project)
- FIRST (Hadron therapy)
- ALICE/LHC (Heavy Ion physics)
- EIC (Hadron physics)
- CLIC (Particle physics)
- BESIII (Particle physics)

CBM > 2018
Compressed Baryonic Matter
Plans for the Upcoming Years

- **R&D Plans on CPS:**
 - realise full scale sensor in 0.18 \(\mu m \) techno. \(\lesssim 20 \mu s \) & MISTRAL \(\gtrsim 30 \mu s \)
 - achieve \(O(1) \) \(\mu s \) time stamping with elongated pixels \(\Rightarrow \) bunch tagging
 - validate concept with 3-bit charge encoding ADC in 0.18 \(\mu m \) techno.
 - study alternative approach using Fine Pixel CPS (4-5 \(\mu m \) pitch)

- **R&D of 2-Sided Ladders:**
 - validate ladder design resulting in 0.35 % \(X_0 \) material budget
 - validate ladder concept based on fast/precise sensors on 1st/2nd face (e.g. ASTRAL & MIMOSA-26)
 - validate power pulsing in high magnetic field
 - investigate 2-sided ladder design allowing for \(< 0.3 \% X_0 \)

- **Framework: R&D Continuation Until Early 2020s**
 - ALICE-ITS until 2016
 - CBM-MVD until 2018
 - MIMOSA-26/-28 users: EUDET-BT, FIRST, EIC, NA-61, NA-63, BES-III, biomedical & X-Ray-imaging, dosimetry, hadrontherapy, ...
 - H2020, LIA, ...
Plans for the Upcoming Years

2014:
- Sensors: realise & validate full scale architectures for ALICE-ITS (ASTRAL ans MISTRAL)
- Ladders: realise and test 0.35 \(\times X_0 \) 2-sided ladder based on MIMOSA-26

2015:
- Sensors: realise final prototype for the ALICE-ITS
- Ladders: test of vertex detector "sector" ≡ 3 consecutive pairs of ladders on beam

2016:
- Sensors: production tests of ALICE-ITS sensors evolve towards CBM-MVD/FAIR (ASTRAL)
- Ladders: realise 2-sided ladder equipped with 2 different chips (e.g. ASTRAL / MIMOSA-26)

2017:
- Sensors: follow ITS production, production of sensors for CBM-MVD (FAIR)
- Ladders: beam tests of 2-sided ladder equipped with 2 different chips

2018: Start realisation of large sensors dedicated to ILC VXD
Overview of the IPHC Team

- **4 Physicists:**
 - 2 University staff: J. Baudot, A. Besson
 - 1 CNRS staff: M. Winter
 - 1 Postdoc: A. Perez Perez

- **10 Electronics and Micro-technics Engineers:**
 - PICSEL group: G. Claus, M. Goffe, Ch. Illinger, K. Jaaskelainen, M. Specht, M. Szelezniak
 - Micro-technics group: M. Imhoff, O. Clausse, J.S. Pelle, F. Agnese

- **13 Chip Designers:**
 - University: G. Dozière
 - 3 PhD students: T.Y. Wang, W. Zhao, Y. Zhou

- **Scientific Production since 2008:**
 - 79 talks at international conferences
 - 31 publications in NIM, IEEE, etc. journals
 - 9 PhD theses defended since 2008 (3 under way)
SUMMARY

- **R&D ON CPS:**
 - Well established architecture achieved and implemented in STAR-PXL (0.35 μm CMOS process)
 - extendable to sensors suited to ILD-VXD \(\lesssim 500 \text{ GeV} \)
 - Not accessible with 0.35 μm process: standalone tracking, bunch tagging (SiD), 1 TeV running, etc.
 - 0.18 μm process accessed in 2011 should allow meeting these goals
 - 2012-13 allowed assessing process & realising all major sensor architecture elements
 - Realisation of complete ASTRAL sensor in 2014 (ITS)
 - Upcoming years: beyond 2014
 - Final ALICE-ITS sensor & CBM-MVD variant (include all main elements for ILD-VXD)
 - ILC dedicated sensors in 0.18 μm process from 2017/18 on
 - Investigate FPCPS delayed read-out approach

- **2-SIDED LADDERS: PLUME collaboration**
 - Prototype based on MIMOSA-26 sensors on the way to achieve 0.35 % \(X_0 \)
 - Upcoming years: beyond 2014
 - Validate concept of complementary sensors with ASTRAL/MIMOSA-26 & power pulsing in string mag. field
 - Assess added value of double-sided ladders
 - Investigate possibilities to still reduced the ladder material budget \(< 0.3\% \ X_0 \)
BACK-UP SLIDES
Main Features of CMOS Sensors (CPS)

- P-type Si hosting n-type "charge collectors"
 - signal created in epitaxial layer (low doping):
 \[Q \sim 70-80 \text{ e-h/ \(\mu m \)} \Rightarrow \text{signal} \lesssim 1000 \text{ e}^- \]
 - charge sensing through n-well/p-epi junction
 - excess carriers diffuse and/or drift to diode
 with help of reflection on boundaries
 with p-wells and substrate (high doping)
 \[\Rightarrow \text{continuous signal sensing (no dead time)} \]

- Prominent advantages of CMOS sensors:
 - **granularity**: pixels of \(\lesssim 10 \times 10 \text{ \(\mu m \)}^2 \Rightarrow \text{high spatial resolution (e.g.} \lesssim 1 \text{ \(\mu m \)} \text{ if needed)}
 - **low material budget**: sensitive volume \(\gtrsim 10 - 20 \text{ \(\mu m \)} \Rightarrow \text{total thickness} \lesssim 50 \text{ \(\mu m \)} \Rightarrow \text{thinning} \lesssim 50 \text{ \(\mu m \)}
 - **signal processing \(\mu \text{circuits integrated in the sensors} \Rightarrow \text{compacity, high data throughput, flexibility, etc.}
 - **industrial mass production** \(\Rightarrow \text{cost, industrial reliability, fabrication duration, multi-project run frequency, technology evolution, etc.}

- Main limitation of the approach: CMOS industry addresses a market far from HEP needs
 - fab. process parameters not optimised to fully exploit the potential of CPS
 - **BUT** recently accessible processes (epitaxial layer, feature size) have opened up new perspectives

Since a few years: high resistivity (> 1 \(k\Omega \cdot \text{cm} \)) epitaxial layer

Main limitation of the approach: CMOS industry addresses a market far from HEP needs

- fab. process parameters not optimised to fully exploit the potential of CPS
- **BUT** recently accessible processes (epitaxial layer, feature size) have opened up new perspectives
CMOS Pixel Sensors: Present Status

- **Established Architecture:**
 - CMOS process: 0.35 \(\mu m \), 2-well, 4 ML, 15/20 \(\mu m \) & \(\sim 1 \text{k}\Omega \cdot \text{cm} \) EPI
 - in-pixel CDS
 - end-of column discrim. (binary encoding)
 - single-row rolling shutter read-out
 - sparse data scan on chip periphery
 - 18.4/20.7 \(\mu m \) pitch \(\Rightarrow \sim 3.3.5 \mu m \) resolution
 - used in EUDET BT (115 \(\mu s \)) & STAR-PXL (190 \(\mu s \))
 - **recent step:** Commissioning of 3/10 STAR-PXL completed at RHIC with pp & ArAr collisions in May-June 2013

- **New Process Under Study Since 2011/12:**
 - CMOS process: 0.18 \(\mu m \), 4-well, 6 ML, 15/40 \(\mu m \) & \(\sim 1-6 \text{k}\Omega \cdot \text{cm} \) EPI
 - allows in-pixel discrimination \(\Rightarrow \) faster read-out & reduced power, etc.
 - development driven by ALICE-ITS upgrade & CBM-MVD/FAIR (\(\sim 20 \mu s \))
 - **recent step:** Assessment of CMOS process detection performances & validation of rolling-shutter read-out completed in 2013
Faster read-out for:

- robustness w.r.t. predicted 500 GeV BG rate (keep small inner radius, ...)
- standalone inner tracking capability (e.g. soft tracks)
- compatibility with high-energy running:
 expected beam BG at $\sqrt{s} \gtrsim 1$ TeV $\approx 3-5 \times$ BG (500 GeV)

Moving to a 0.18 μm imaging CMOS process:

- Deep P-well & 6 metal \Rightarrow in-pixel discri. (AROM sensor)
- Epi. layer: 18–40 μm thick, $\rho \sim 1-6$ k$\Omega \cdot cm$
- Stiching \Rightarrow multi-chip slabs (yield ?)

2013 (beam) test results:

- 12 diff. chips exploring sensing + r.o. fab. in 2013
Fine Pixel CCDs: Main Features

Prominent Features of FPCCDs:

- Signal charge created in a fully depleted ~ 15 \(\mu m \) thin epitaxial layer
 - limited charge spread
- Very small pixels (5 \(\times \) 5 \(\mu m^2 \)):
 - \(\sigma_{sp} \lesssim 1 \mu m \)
 - beam related BG rejected by pattern recognition
- High-res epi and small pixels (occupancy/BX ~ few ppm) used to integrate over full train duration
 - devt addresses very low power ADCs
- Can be thinned down to 50 \(\mu m \)
- Need -40\(^\circ\)C cooling for radiation tolerance purposes
 - impact on material budget (modest ?)

Several Essential R&D Topics Addressed:

- 5 \(\times \) 5 \(\mu m^2 \) pixel matrix detection performances
- Low power, large bandwidth, r.o. electronics (e.g. 8-bit? ADC)
- Low mass CO\(_2\) cooling

Approach not limited to CCDs: should work with CMOS sensors (cost effective, smaller pixels, cooling)
Chronopixel Sensors: Main Features

- **Prominent Features of CMOS Pixel Sensors:**
 - CMOS Pixel Sensor with in-pixel (single BX) 12-bit time stamping
 - tracking based on Vx detector seed (SiD option)
 - Read-out delayed in between consecutive bunch trains (power saving)
 - Double-hit timestamping possibility (25 \times 25 \mu m^2 pixels)

- **Requires a Very Advanced (Mixed?) CMOS Technology:**
 - VDSM (\leq 90 \text{ nm}, with deep P-well), for high \(\mu \)circuitry density
 - trade-off: pixel size (occupancy) vs in-pixel circuitry complexity
 - Epitaxial layer: thick and resistive enough for cluster spread and SNR

- **Customized Design in Industry (Sarnoff):**
 - cost, design optimisation possibility, devt timeline, ...
DEPFET Sensors: Main Features

Prominent features of DEPFET pixel sensors:
- Signal charge created in a fully depleted Si substrate and collected by a n-type node ("internal gate") buried under a p-channel FET, delivering a current modulated (\propto) by the charge collected on the node
- External gate to enable read-out \Rightarrow r.o. chips
- Clear contact removes charge from internal gate \Rightarrow switcher chip
- Steering and signal processing ASICs bonded on ladder edge & end
- Read-out based on rolling shutter mode \Rightarrow low power
- High granularity \Rightarrow micronic spatial resolution
- Can be thinned down to 50 μm.
- Sensors are embedded in Si mechanical support \Rightarrow low material budget

Technology under prod/devt for the Belle-II vertex detector:
- Several specs close to those of the ILD-VXD inner layer (e.g. $< 0.2\% \times \sigma$)
- Granularity \times speed still to improve
Activités du Groupe PICSEL

- **CAPTEURS À PIXELS CMOS (CPS) POUR LE STAR-PXL:**
 - 400 capteurs MIMOSA-28 (9·10⁵ pix., 200 µs, σsp ∼ 3.5µm)
 - installation d’un détecteur de 3 sect./10 le 8 mai 2013 à RHIC
 - mise en service avec coll. pp depuis le 9 mai
 - implication IPHC actuelle: 1 IR Elec. (+ suivi des concepteurs)

- **CPS POUR L’ITS-2020 D’ALICE:** MISTRAL (30µs) & ASTRAL (∼ 15µs)
 - 7 (baseline) ou 3 couches (∼ 9 m²) pixellisées (∼10¹⁰ pixels)
 - dévt de CPS en techno. CMOS-0.18µm en coll. avec CERN et al.
 - 2012: techno validée au niveau du pixel (1 MRad † 10¹³ neq/cm² à 30°C)
 - 2013-14: prototypage pour valider l’architecture globale avec sparsification
 - implication IPHC actuelle: 6-7 Ing. µElec., 3-4 Ing. Elec., 3 phys. (1 prof.)
 - coll. avec Univ. Frankfurt pour le MVD(CBM): même CPS (vide, T < 0°C)

- **DÉVTS POUR UN DÉT. DE VERTEX À L’ILC:** DBD EN Q1/2013
 - adaptation des CPS(ALICE) pour ILC-500 puis ILC-1000 (∼ 2 µs)
 - dévt d’échelles ultra-légères simple- & double-face
 - études d’optimisation de la géométrie du détecteur
Activités du Groupe PICSEL

- **ACCOMPAGNEMENT DES APPLICATIONS DE MIMOSA-26** *(Télescope EUDET → 6-7 exemplaires)* :
 - Déf. Vx (FIRST/GSI)
 - Proto. MVD (CBM/FAIR)
 - Déf. Vx (NA-61/SPS ≥ 2013)
 - Dosimétrie en ligne à protons (ANR QAPIVI, etc.)

- **CONTRIBUTIONS AUX APPLICATIONS DE MIMOSA-28** *(STAR-PXL)* :
 - Imageur protons (TraCal) au GSI/Bio
 - Proto. télescope AIDA (WP-9.3)
 - Proto. tracker BESS-3 (FCPPL)

- **AIDA (FP-7)**
 - dév d’un capteur abouté de $4 \times 6 \text{cm}^2$ pour télescope final
 → démonstrateur Déf. Vx eRHIC (LDRD BNL)
 - réalisation d’un secteur simplifié de Déf. Vx pour l’ILC équipé d’échelles PLUME
 → études d’alignement micronique
 - dév d’une connectique de haute densité pour capteurs à 2 couches (3DIT)
 → coll. avec institut Fraunhofer

- **PROBIM (COLL. IMNC) : EN ÉMERGENCE**
 - imagerie β avec sources internes : dépôt éventuel d’un projet ANR en 2014

- **IMAGEUR X : ACTIVITÉ EN EMERGENCE**
 - dév d’un spectromètre à rayons X dérivé de MISTRAL/ASTRAL (couche épitaxiée de $30–40 \mu m$ hautement résistive