

CONSEIL SCIENTIFIQUE DE L'INSTITUT NATIONAL DE PHYSIQUE NUCLEAIRE ET DE PHYSIQUE DES PARTICULES (IN2P3)

Réunion plénière du jeudi 26 octobre - Amphi Marie Curie - et vendredi 27 octobre 2017 - salle Pierre Auger Campus Michel-Ange - CNRS - PARIS

Etude de l'interaction faible

Etienne Liénard

LPC Caen, Université de Caen Normandie

Décroissance β nucléaire = processus semi-leptonique gouverné par l'interaction faible (IF)

 \Rightarrow outil possible pour étudier l'IF

dans les décroissances

pures (F ou GT)

& miroirs (F + GT)

Comment ?

Mesures de précision des

- corrélations entre les particules (impulsions ou impulsions et spins)
- valeurs "ft"

Pourquoi?

Structure & conditions du MS	Tests possibles
 Théorie V-A (W[±], Z₀ = particules médiatrices) 	 "Courants" exotiques au-delà de V-A
$\Rightarrow C_{\text{Scalaire}} = C_{\text{Tenseur}} = C_{\text{Pseudoscalaire}} = 0$ • Violation Maximale de Parité (<i>MPV</i>): $C_i = C_i'$	 ⇒ nouvelles particules méd. (leptoquarks) Violation des symétries fondamentales :
 Invariance ss Renv. Temps (TRI): C_i réelles 	courants droitiers, violation de CP,
Conservation du Courant Vectoriel (CVC)	Hypothèse CVC, unitarité de la matrice
 3 familles de particules fondamentales 	CKM (détermination précise de V_{ud})

Corrélations accessibles aux expériences

 $A(\rho)$

dans le cadre V - A

détermination de ρ

F	GT	Miroirs
-1 < a ≤ 1 Courants <mark>Scalaires</mark>	-1/3 ≤ <i>a</i> < 1/3 Courants Tensoriels	<i>a</i> (<i>ρ</i>) où <i>ρ</i> = GT/F
Test de la t	dans le cadre V - A détermination de ρ	
2. Entre impulsion &	spin $A \frac{\vec{J}.\vec{p}_e}{JE_e}$	conservation T change de signe sous F
F	GT	Miroirs

 $A \neq 0 \Rightarrow$ violation P

Test de MPV

Pas de sens

Corrélations accessibles aux expériences

conservation P
 change de signe sous T

F	GT	Miroirs
Pas de sens	Pas de sens	$D \neq 0 \Rightarrow$ violation T

Recherche de nouvelles sources de violation de CP

Mesures précises des valeurs "ft"
 (M, T_{1/2}, BR, ρ)

$$ft \propto \frac{1}{C_V^2 |M_F|^2 + C_A^2 |M_{GT}|^2} \propto \frac{1}{C_V^2 |M_F|^2 (1 + \rho^2)}$$

• Cas spécial : le terme de Fierz

$$b \ \frac{m_e \ c^2}{E_e}$$

toujours présent, pas de corrélation conservation de P, T

 $b \propto C_{exotic} \times C_{standard} = 0$ dans SM ! \Rightarrow test de la théorie V - A

Observables sensibles à b :

1. Distribution en énergie cinétique des β

$$N(p_e) \propto W(p_e)(l+b\frac{m_ec^2}{E_e})$$

nécessite une détection "propre" des particules β

2. Corrélations $\beta - \nu$ $N(p_e, \theta) \propto W(p_e) \xi (1 + \tilde{a} \frac{v_e}{c} \cos(\theta))$ $\tilde{a} = \frac{a}{1 + b \langle m_e / E_e \rangle}$

 $a \propto |C_{exotic}|^2$ & $b \propto C_{exotic} \Rightarrow b$ accroît la sensibilité du paramètre de corrélation!

3. Valeurs *Ft* $Ft \propto (1 + \langle m/E \rangle b)^{-1}$

études soutenues des décroissances pures $F \rightarrow$ contraintes excellentes sur b_F

Développement de LPCTrap : contexte en 1997

- Couplages exotiques en interaction faible : situation des mesures de "a"
 - GT : ⁶He (Johnson *et al.* PRC 1963) $\rightarrow a_{GT}$ = -0.3308 (30)
 - F: ³²Ar (projet Adelberger *et al.*) $\rightarrow a_F = 0.9989$ (65) publié en 1999 ^{38m}K (projet Gorelov *et al.*) $\rightarrow a_F = 0.9981$ (48) publié en 2005

 $(\longrightarrow \text{ limites sur les courants : } C_T/C_A < 9\% C_S/C_V < 7\%)$

- Projet SPIRAL @ GANIL
 - Faisceaux légers riches en n : ⁶He, ⁸He, ¹⁸Ne, ¹⁹Ne, ³²Ar, ³⁵Ar, ... avec intensités élevées
 - Premier faisceau en 2001

Le dispositif LPCTrap

- Source radioactive confinée dans un piège de Paul transparent
- faisceau

- détection en coïncidence des β – ions de recul
- a déduit de la distribution en temps de vol des reculs

Simulation pour la décroissance ⁶He⁺

- ⁶He : bon candidat
 - Transition pure GT
 - 100% fond. vers fond.
 - $T_{1/2}$ raisonnable = 806.7 ms
 - Q_{β} élevé = 3.51 MeV, T_{max} = 1.4 keV
 - Taux de production élevé : 2 10⁸ ions/s

nécessite une connaissance approfondie du dispositif expérimental !

LPC Caen, GANIL

⁶He : premiers résultats

• Première expérience en 2006

 $a_{\beta\nu}$ = - 0.3335 (73) _{stat} (75) _{syst}

Fléchard et al., J.Phys.G 38 (2011) Highlight de JPG 2011 !

- Meilleure précision sur a_{GT} par une technique de coïncidence (∠a/a = 3%)
- Bon contrôle des paramètres expérimentaux & simulation

Incertitudes systématiques

Source	Uncertainty	$\Delta a_{\beta v}$ (x 10 ⁻³)	Method
Cloud temperature	6.5%	6.8	off-line measurement
$\theta x_{\rm MCPPSD}$	0.003 rad	0.1	present data
θy_{MCPPSD}	0.003 rad	0.1	present data
MCPPSD offset (<i>x</i> , <i>y</i>)	0.145 mm	0.3	present data
MCPPSD calibration	0.5 %	1.3	present data
d _{DSSSD}	0.2 mm	0.3	present data
E _{scint}		0.8	present data
E _{si}	10%	0.8	GEANT4
Background		0.9	present data
β Scattering	10%	1.9	GEANT4
Shake off	0 - 0.05	0.6	theoretical calculation
V _{RF}	2.5%	1.7	off-line measurement
total		7.5	

Principaux paramètres systématiques :

- Mouvement du nuage (température)
- Diffusion des β

LPC Caen, GANIL

⁶He : premiers résultats

• Dernière expérience en 2010

 Analyse réalisée pour extraire P_shakeoff (simulation complète @ faible statistique : ~ 4x10⁵)

 $P_{shake-off} = 0.02339(35)_{stat}(07)_{syst}$

- Précision élevée : $\Delta P_{\text{shake-off}}$ = 3.6 10⁻⁴
- Excellent accord : valeur théorique 0.02322 Couratin et al., PRL108 (2012) Highlight de PRL 2012 !
- Au sujet de a_{GT} :
 - $(\Delta a_{GT}/a_{GT})_{\rm stat}$ ~ 0.45 %
 - Difficultés pour reproduire fidèlement les distributions expérimentales \rightarrow mauvais χ^2 !
 - Amélioration de la modélisation du nuage en incluant les effets du refroidissement & de la charge d'espace (GPU's, CUDA)

Précision finale attendue : $0.6\% < (\Delta a_{GT}/a_{GT})_{tot} < 2.2\%$

Résultats utilisés dans une analyse globale incluant toutes les données disponibles

Revues:

DEVIEWS OF MODEDN DIVSIOS VOLUME 78 HUV SEDTEMPED 2006	Journal of	of Physics G: Nuclear and Particle Physics		
REVIEWS OF MODERN PHISICS, VOLUME 78, JULI-SEPTEMBER 2000	J. Phys. G: Nucl. Part. Phys. 41 (2014) 114001 (29pp)	doi:10.1088/0954-3899/41/11/114001		
Tests of the standard electroweak model in nuclear beta decay				
Nathal Severijns* and Marcus Beck [†]				
Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium	Precision frontier in semiler	itier in semileptonic weak heory		
Oscar Naviliat-Cuncic [‡]	interactional theory			
Université de Caen Basse-Normandie and Laboratoire de Physique Corpusculaire CNRS-ENSI, F-14050 Caen, France	interactions: theory			
(Published 29 September 2006)				
	Barry R Holstein			
	Department of Physics-LGRT, University of Mass	achusetts Amherst, MA 01003, USA		

+ Severijns et al. PhyScr 2013, Severijns JPG 2014, Wauters et al. PRC 2014 ...

Courants exotiques : état des lieux

- Meilleures contraintes par "b", mais "a" ajoute des limites...
- En vert : contraintes issues du LHC (données CMS)

Naviliat et al ADP525(2013) Cirigliano et al PPNP71(2013)

Niveau de précision @ 10⁻³ nécessaire pour complémentarité avec LHC

Courants exotiques : état des lieux & projets

Plusieurs projets \rightarrow niveau de précision à 0.1% - 0.5 %

adapté de Severijns & Naviliat PST152(2013)

+ mesures directes de "b" avec le même niveau de précision

Courants exotiques : état des lieux & projets

Plusieurs projets \rightarrow niveau de précision à 0.1% - 0.5 %

Parent	Technique	Team, laboratory	Remarks	
⁶ He	Spectrometer	ORNL	a = -0.3308(30)	1963
³² Ar	Foil; p recoil	UW-Seattle, ISOLDE	$\tilde{a} = 0.9989(52)(39)$	1999
^{38m} K	MOT	SFU, TRIUMF	$\tilde{a} = 0.9981(30)(34)$	2005
²¹ Na	MOT	Berkeley, BNL	a = 0.5502(38)(46)	2008
⁶ He	Paul trap	LPC-Caen, GANIL	$\tilde{a} = -0.3335(73)(75)$	2011
⁶ He	Paul trap	LPC-Caen, GANIL	Analysis under way	
⁸ Li	Paul trap; $\beta \alpha$	ANL	$\tilde{a} = -0.3342(26)(29)$	2015
³⁵ Ar	Paul trap	LPC-Caen, GANIL	Analysis under way	
³² Ar	Foil; β -p coinc	CENBG, ISOLDE	In preparation	
¹⁹ Ne	Paul trap	LPC-Caen, GANIL	Analysis under way	
⁶ He	EIBT	Weizmann, SOREQ	In progress	
⁶ He	MOT	ANL, CENPA	In progress	
Ne	MOT	Weizmann, SOREQ	In progress	
²¹ Na	MOT	KVI-Groningen	In progress	
^{32}Ar	Penning trap	Texas A&M	In preparation	
⁸ He	Foil; $\beta \gamma$	NSCL	In preparation ?	

adapté de Severijns & Naviliat PST152(2013)

+ mesures directes de "b" avec le même niveau de précision

Courants exotiques : WISArD@ISOLDE

Weak-Interaction Studies with ³²Ar Decay


```
CENBG, LPC Caen
```

Courants exotiques : WISArD@ISOLDE

• Source radioactive implantée dans une fine feuille

Détection d'un p retardé émis pendant le recul

- \rightarrow décalage cinétique (~10keV) $\propto a$
- coïncidences β p à 0° & 180° dans l'aimant de WITCH
 - → double décalage cinétique

Severijns & Blank JPG44(2017)

sur l'énergie cinétique du p (~ 3.3 MeV)

- globalement, le courant vectoriel induit un décalage cinétique contrairement au courant scalaire
- méthode sans détection des reculs et insensible à la diffusion $\beta \rightarrow 0.1\%$ semble accessible

```
<u>Candidats intéressants</u> : <sup>32</sup>Ar, <sup>20</sup>Mg, <sup>22</sup>Al, <sup>24</sup>Si, <sup>36</sup>Ca... \longrightarrow @ GANIL : SPIRAL & S<sup>3</sup>
avec PIPERADE dans DESIR
```

Violation des symétries fondamentales : le renversement du Temps

- Violation de T = violation de CP
- Observation dans les décroissances de mésons insuffisante pour reproduire l'asymétrie matière – antimatière dans l'univers
- Corrélations triples en décroissance β (*D* and *R*) & nEDM → recherche de nouvelles sources de violation de CP
- Meilleurs résultats actuels en décroissances nucléaires :

Illustration: Sandbox Studio

 $^{19}\text{Ne} \rightarrow D = (1 \pm 6) \ 10^{-4}$ Calaprice et al. Hyp. Int.22 (1985)

 $n \rightarrow D = (-0.94 \pm 1.89 \pm 0.97) 10^{-4}$ Mumm et al. PRL107 (2011), Chupp et al. PRC86 (2012)

• Violation de CP : mesure de D

$$D \, \frac{\vec{J}.(\vec{p}_e \times \vec{q})}{J(E_e E_V)}$$

- coïncidences β reculs
- \vec{J} connu

$$D = \frac{-2\rho \, Im(\,\delta_{JJ'}(\frac{J}{J+1})^{1/2} \, \frac{C_A^*}{C_A})}{(\,1+\rho^2\,)}$$

• $D \neq 0 \rightarrow \rho \neq 0$ \rightarrow décroissance miroir !

Nouveaux faisceaux SPIRAL

GANIL, LPC Caen

Test de la violation de CP : mesure de D

• Polarisation du nuage : méthode du pompage optique

- Polarisation réalisée grâce à l'interaction multiple avec des lasers @ v adéquates
 → première mondiale
- Evolution du système de détection :
 → arrangement de 8 modules
- Faisceaux intéressants : ²³Mg, ³⁹Ca

Projet "MORA" (Matter's Origin from the RadioActivity of trapped and laser oriented ions)

Projet MORA

- ~ 630k€ financés par la Région Normandie pour 2 ans
- Collaboration GANIL LPC Caen + contributions de JYFL, IKS Leuven, ISOLDE, IPNL, U Manchester
- T₀ : avril 2018
- 1^{ère} étape : mesure polarisation nuage ²³Mg @ JYFL degré élevé attendu (> 99% in 0.2ms) & évaluation via la mesure de A_β
- Mesures de D
 - $D \propto \frac{N^+ N^-}{N^+ + N^-}$ entre 2 directions opposées de polarisation
 - 1ère @ JYFL, amélioration @ DESIR
 - Résultats attendus en 1 semaine :

JYFL: *σ*_D ~ 5×10⁻⁴

DESIR: $\sigma_{D} \sim 5 \times 10^{-5}$

• Décroissances nucléaires miroirs vs pures F

CENBG, GANIL

avec des sources calibrées

effort & temps importants dédiés à ce travail seulement 2 tels Ge dans le monde, 1 au CENBG !

Blank et al. NIMA776 (2015)

E. Liénard

21

0⁺.1

 $\Delta \varepsilon_{\rm rel} = 0.1\%, \Delta \varepsilon_{\rm abs} = 0.15\%$

CVC, V_{ud} & CKM : mesures des valeurs *ft*

CENBG, GANIL

CVC, V_{ud} & CKM : mesures des valeurs *ft*

CVC, V_{ud} & CKM : mesures des valeurs *ft*

• Décroissances pures Fermi : état des lieux & perspectives

	δ_{IM}			Ft			
Emitter	Present	Ormand,	Towner,		Present	Towner,	
	work	Brown	Hardy		work	Hardy	
	(2013)	(1989)	(2008)		(2013)	(2010)	
²² Mg	0.0216(9)	0.017	0.010	0 (10)	3077.6(72)	3077.6(74)	
²⁶ <i>m</i> AI	0.0120(8)	0.01	0.025	5 (10)	3072.9(13)	3072.4(14)	
²⁶ Si	0.046(0)	0.028	0.022	2 (10)			
³⁰ S	0.027(1)	0.056	0.137	7 (20)			
³⁴ Cl	0.0363(5)	0.06	0.09	1 (10)	3072.6(21)	3070.6(21)	
³⁴ Ar	0.0060(4)	0.008	0.023	3 (10)	3070.7(84)	3069.6(85)	
Parent	<i>a</i>	(a)		l an	n et al PR(27/2012	
rucit	Ŧ	T(S)				<i>JOT (2013)</i>	
nuclous		Townor	and			,07 (2013)	
nucleus	Present	Towner	and	2011	<i>n ot al. 1 1</i> 10	,07 (2013)	
nucleus	Present work	Towner Hard	and y ^a	2011	n ot di. r ric	,07 (2013)	
nucleus 22Mg	Present work 3077.6 (72)	Towner Hard <u>y</u> 3077.6	and y^a (74)	2011		,07 (2013)	
nucleus ²² Mg ²⁶ Al ^m	Present work 3077.6 (72) 3072.9 (13)	Towner Hardy 3077.6 3072.4	and y ^a (74) (14)		≠ modě	eles	
nucleus ²² Mg ²⁶ Al ^m ³⁴ Cl	Present work 3077.6 (72) 3072.9 (13) 3072.6 (21)	Towner Hardy 3077.6 3072.4 3070.6	and y ^a (74) (14) (21)	(≠ modě		

 $\delta_{\rm c} = \delta_{\rm IM} + \delta_{\rm RO}$

Incertitude dominée par les corrections théoriques ! Crucial de réaliser des mesures pour les améliorer !

CENBG, GANIL, LPC Caen

CVC, V_{ud} & CKM : mesures des valeurs ft

• Décroissances pures Fermi : état des lieux & perspectives

Mesures à Z plus élevé

CVC, V_{ud} & CKM : mesures des valeurs *ft*

• Décroissances nucléaires miroirs vs pures F

CENBG, GANIL

CVC, V_{ud} & CKM : mesures des valeurs *ft*

• Décroissances nucléaires miroirs

- ¹⁹Ne T_{1/2}: *Broussard et al. PRL112 (2014)*
- ²¹Na M: Mukherjee et al. EPJA35 (2008) $T_{1/2}$: Grinyer et al. PRC91 (2015) — FR
- ²³Mg M: Saastamoinen et al. PRC80 (2009) T_{1/2}, BR: Magron et al. EPJA53 (2017) — FR
- ³¹S M: Kankainen et al. PRC82 (2010) T_{1/2}: Bacquias et al. EPJA48 (2012) — FR
- ³³Cl T_{1/2}: Grinyer et al. PRC92 (2015) FR
- ³⁷K T_{1/2}: *Shidling et al. PRC90 (2014)*
- ³⁹Ca T_{1/2}: Blank et al. EPJA44 (2010) FR

Communauté scientifique impliquée dans le domaine

FR = contribution française

CENBG, GANIL

CVC, V_{ud} & CKM : mesures des valeurs *ft*

• Décroissances nucléaires miroirs

Communauté scientifique impliquée dans le domaine... MAIS

V_{ud} (2009) = 0.9719 (17) ↓ V_{ud} (2017) = 0.9721 (17) !!

Pour la détermination de V_{ud} , les valeurs de ρ doivent être améliorées ...

• Décroissances nucléaires miroirs

<u>Résultat récent</u> : mesure de A_{β} dans ³⁷K (TRIUMF) Fenker et al. arXiv:1706.00414v1 2017

- Source confinée dans le MoT de TRINAT
- Détection des β dans la direction Z avec une polarisation des noyaux en $\pm Z$
- Degré de P mesuré par une sonde laser & détection des photo-ions

 $\rightarrow P_{\sigma} = 99.13(8)\%$ $P_{\sigma} = 99.12(9)\%$

 \implies A_{β} = -0.5707(18) 0.3% précision relative

⇒ V_{ud} (2009) = 0.9719 (17) → V_{ud} (2017) = 0.9728 (14) !!

en un seul coup \rightarrow amélioration claire sur V_{ud} & A_β(³⁷K) \neq le cas le plus sensible...

• ρ précisément déterminé via des mesures de corrélation

Severijns & Naviliat PST152(2013)	<i>a</i>	$m_m = \frac{(1)}{(1)}$	$\frac{-\rho^2/3}{1+\rho^2}$	A	$m = \frac{\rho^2}{(1-\rho^2)}$	$\frac{-2\rho\sqrt{J(J+l+\rho^2)}}{(J+l+\rho^2)(J+l+\rho^2)}$	<u>1)</u>
a or A @ 0.5%? $19Ne^{21Na}^{21Na}^{23Mg}$ meilleure sensibilité $23Mg$ avec des mesures de a $35Ar^{33}Cl$	Parent nucleus ³ H ¹¹ C ¹³ N ¹⁵ O ¹⁷ F ¹⁹ Ne ²¹ Na ²³ Mg ²⁵ Al ²⁷ Si ²⁹ P ³¹ S ³³ Cl ³⁵ Ar ³⁷ K ³⁹ Ca ⁴¹ Sc	ΔV_{ud} 0.0011 0.0025 0.0017 0.0020 0.0019 0.0011 0.0022 0.0025 0.0019 0.0025 0.0019 0.0026 0.0038 0.0021 0.0019 0.0024 0.0024 0.0024 0.0029	<i>a</i> $(\Delta V_{ud})^{\text{limit}}$ 0.0010 0.0016 0.0017 0.0016 0.0013 0.0010 0.0017 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0017 0.0016 0.0018 0.0022	Factor $\Delta \mathcal{F}t$ 2.1 4.0 1.0 2.4 3.1 1.5 2.7 3.1 1.7 4.1 3.4 5.9 2.0 1.1 5.8 3.5 2.7	ΔV_{ud} 0.0011 0.0207 0.0123 0.0023 0.0341 0.0011 0.0036 0.0034 0.0056 0.0068 0.0024 0.0068 0.0024 0.0068 0.0013 0.0007 0.0050 0.0032 0.0299	$A \\ (\Delta V_{ud})^{\text{limit}} \\ 0.0009 \\ 0.0207 \\ 0.0123 \\ 0.0020 \\ 0.0341 \\ 0.0011 \\ 0.0034 \\ 0.0034 \\ 0.0030 \\ 0.0056 \\ 0.0066 \\ 0.0066 \\ 0.0006 \\ 0.0006 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0027 \\ 0.0299 \\ 0.0299 \\ 0.0000 \\ 0.0000 \\ $	Factor $\Delta \mathcal{F}t$ 2.3 0.3 0.1 1.9 0.1 1.5 1.3 1.9 0.5 1.1 4.3 1.8 6.0 4.8 2.3 2.2 0.2 0.2
LPCTrap@GANIL !	⁴³ Ti ⁴⁵ V	0.0076 0.0112	0.0018 0.0020	13.2 17.7	0.0167 0.0115	0.0151 0.0032	1.6 11.2
$(\Delta V_{ud})^{\text{limit}} \rightarrow \text{seulement } \Delta \rho \cos \theta$	ontribue à	l'ince	ertitude		≠ le p	olus sen	sible

• ³⁵Ar & ¹⁹Ne : données acquises avec LPCTrap

³⁵Ar : 2011 - 2012

Shakeoff : Couratin et al. PRA88 (2013)

- analyse des données en cours pour *a*
- $(\Delta a_m / a_m)_{\text{stat}} \sim 0.15 \%$
 - Résultat potentiel avec une très grande précision …

¹⁹Ne : 2013

Revue : Liénard et al. Hyp Int 236 (2015)

- analyse des données en cours pour SO & *a*
- $(\Delta a_m / a_m)_{\text{stat}} \sim 11 \% (a_m \sim 0 ...)$
 - $\square \land Meilleure précision pour a_m$ $mais sans effet sur <math>\Delta V_{ud}$

LPC Caen, GANIL, CENBG

CVC, V_{ud} & CKM : mesures des valeurs *ft*

• Décroissances nucléaires miroirs

Perspectives @ GANIL : mesure de *a* dans plusieurs décroissances miroirs avec LPCTrap2

CENBG

CVC, V_{ud} & CKM : mesures des valeurs *ft*

• Décroissances nucléaires miroirs

<u>Autre intérêt</u> : test des modèles utilisés pour calculer les corrections théoriques (δ_c)

26 – 27 oct 2017

CONCLUSION

- Décroissance β nucléaire = outil sensible pour étudier l'Interaction Faible
 - \rightarrow Existence de courants exotiques \rightarrow WISArD (ISOLDE)
 - \rightarrow Violation des symétries fondamentales \rightarrow MORA (JYFL)
 - \rightarrow Hypothèse CVC, unitarité de CKM
- → LPCTrap (SPIRAL) Dispositif d'implantation (SPIRAL, JYFL, ISOLDE, TRIUMF)
- grâce aux mesures précises de distributions d'événements en corrélation & des valeurs ft (M, $T_{1/2}$, BR, ρ) dans les transitions pures et miroirs

programme complet dans LRP 2017 NuPECC

NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics

- Toutes les plateformes de production de GANIL/SPIRAL(2) sont utiles
 - \rightarrow SPIRAL 1: noyaux légers avec intensités élevées pour mesurer les corrélations (*a*, *D*), et valeurs *ft* dans les miroirs
 - → S3-LEB: noyaux légers non disponibles à SPIRAL1 & noyaux lourds pour les valeurs *ft* dans les pures F

meilleur site pour réaliser ce programme avec des faisceaux de haute qualité : DESIR !

Plan de DESIR (esquisse)

Installation complète pour mesurer $T_{1/2}$, BR, M, a et D