

Antonin MAIRE – IPHC Strasbourg Thursday, Feb. 8th 2018 – **Conseil Scientifique In2p3 2018**

***ALICE et la physique des ions lourds** A-A, p-A and pp

Part A - Introduction : QCD+QGP experimentationPart B - Runs 1+2 status and outcomePart C - Runs 3+4 preparation and physics perspectives

ć			-		-	-	-	-	-	-	-	-	-	-	-	
ı.					_			,		~	-					
					٠,)	1		1	5						
					2		1			J						
ı.																
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

Part A – QCD+QGP experimentation

I.0 – **Intro** : QCD fundamental questions

• How does the complexity emerge from the dynamics of the strong interaction ? (phase diagram of nuclear matter)

• Can one probe the fundamental symmetries of the QCD Lagrangian and study the QCD vacuum ?

2 symmetries broken under normal conditions, but 2 symmetries whose *restoration* = accessible in the lab \rightarrow uniqueness in HEP !

I.1 – Experimental intro : Bjorken scenario

DOI: 10.1103/PhysRevD.27.140

I.2 – **Exp**^{al} **intro** : pp, pA, AA... different physics ?

I.3 – **Exp**^{al} **intro** : continuum of physics ?

1.4 - Exp^{al} intro : $dN_{ch}/d\eta = f(\eta_{LAB})$

II.1 – **ALICE** : the experiment and the collaboration

-	-	-	-	-	-	-	-	1			-	-	-	-	-
			-		~			,		~	-				
					[]		1		1	5					
					υ		1			J					
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

c	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
ι.					-			,		~						
۰.				L	T		1		1	5	٦					
				L	1		1		•	J						
۰.																
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

- <u>ALICE objectives for Runs 1+2</u>: 1 nb⁻¹ in Pb-Pb + "track-equivalent" \mathscr{L}_{int} in pp
 - pp campaigns at reference \sqrt{s}
 - p-Pb campaigns

ċ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
ι.					_			,		-	-					
۰.			1)		1		ŀ	5	Т					
				۰.	2		1		Ľ	J						
۰.																
-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	

Antonin.MAIRE@cern.ch – ALICE France / Conseil Sci. 2018

II.3 – ALICE : detector layout

II.4 – ALICE : ITS

• Inner Tracking System = ITS

- $|\eta_{ITS}| < 0.9$ at least $/p_T^{threshold} \sim 50 \text{ MeV/c}$ $2 \text{ layers} = \text{silicon pixels, SPD (hybrid pixels : 50 x 425 <math>\mu m^2$)} 2 layers = silicon drift, SDD $2 \text{ layers} = \text{silicon strips, SSD} \leftarrow$
- \rightarrow trigger \rightarrow vertexing, tracking \rightarrow PID (d*E*/d*x*)

(SPD) (SPD, SDD, SSD) (SDD, SSD)

16 / 61

II.5 – **ALICE** : EmCal+DCal

EmCal+DCal

- $\approx 20 \text{ x/X}_{0}$ (Pb layers + scintillator layers) *E* or $p_{T}^{\text{threshold}} \approx 2 \text{ GeV}(/c)$ - EmCal : $\Delta \phi = 107^{\circ}$ + $|\eta_{\text{EmCal}}| < 0.7$ - DCal: $\Delta \phi = 67^{\circ}$ + 0.22 < $|\eta_{EmCal}| < 0.7$
- \rightarrow trigger $\rightarrow e^{\scriptscriptstyle \pm} \ + \ direct \ \gamma, \ \pi^{\scriptscriptstyle 0} \rightarrow \gamma \gamma, \eta \rightarrow \gamma \gamma, ...$

17 / 61

Antonin.MAIRE@cern.ch - ALICE France / Conseil Sci. 2018

DCal

II.6 – ALICE : VZERO

• VZERO or V0

 $V0A = 2.8 < \eta < 5.1$ V0C = -3.7 < $\eta < -1.7$ forward arrays of scintillators

- → event activity : Online trigger (Min Bias + Pb-Pb centrality + high-mult. pp) Offline use = (Pb-Pb, p-Pb, pp)
- \rightarrow event selection : physics vs beam-gas identification

 \rightarrow event charac.: event plane + ref. flow vector (Pb-Pb)

18 / 61

II.7 – ALICE : μ spectrometer

• μ arm : μ tracking + μ trigger

-4 < η_{μ} < -2.5 dedicated dipole magnet (rigidity = 3 T.m)

 \rightarrow μμ (low-mass vector mesons, quarkonia cc, bb, Z) → single μ (open heavy flavours, W[±]) ^{19 / 61}

III. 1 – ALICE features : low p_{T}

<u>A</u>) Focus on low p_{T} ($\leq 2-3$ GeV/c) and intermediate p_{T} ($2-3 \leq p_{T} \leq 8-10$ GeV/c)

- *NB* : X% of the particle production sit below $p_T \le 0.5 \text{ GeV/c}, \le 2 \text{ GeV/c}, \dots$
- To keep i) large Acceptance x Efficiency, Ax ε ii) detection threshold at very low p_T iii) excellent p_T resolution (ex: $\leq 1-2\%$ for $p_T \in [0.1-10]$ GeV/c)
- <u>Need 1</u>) \rightarrow low event pile-up (in bunch + out-of-bunch) // readout speed // \mathscr{L}_{inst}
 - <u>Need 2</u>) \rightarrow moderate B field

• <u>Need 3</u>) \rightarrow lowest possible material budget x/X₀

Antonin.MAIRE@cern.ch - ALICE France / Conseil Sci. 2018

For further details, see ALICE Performance, arXiv:1402.4476

III.2 – **ALICE features** : passive PID at forward *y*

B) very good detector-PID capabilities over wide range of p_{τ}

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
			_		-		,			-						
			٠,)	Т		1		4	•	T					
			2		L		/		L	,	I					
				-			•		•	•	-	-	-	-	-	

ALICE Perf., arXiv:1402.4476

III. $2 - ALICE \text{ features} : PID at y \approx 0$

ALICE Perf., arXiv:1402.4476

III.3 – ALICE features : systematism

Comprehensive and systematic measurements in pp, p-Pb and Pb-Pb \rightarrow ALICE role for QGP+QCD at LHC

(heavy-)flavour physics :

×7.	 					
	~	~	1	~	-	
	•)	2	1	6	. Т	
	~	J	/	U		

III.3 – ALICE features : systematism

Comprehensive and systematic measurements in pp, p-Pb and Pb-Pb \rightarrow ALICE role for QGP+QCD at LHC

(heavy-)flavour physics :

 \rightarrow <u>ALICE publications</u>

≥ 200 submitted/published papers (in date : 2 Feb. 2018) Among which :

- 2 Nature Phys., 29 PRL, 29 JHEP, 55 Phys. Lett. B, 31 EPJC, 20 PRC, ...
- 6 (500+ citations) / 11 (250+) / 45 (100+) / 45 (50+) / ...

Average citations \approx 102.5/article (in date : 7 Feb. 2018)

 \rightarrow INSPIRE: find cn ALICE and ac 100+

24 / 61

III.4 – ALICE features : computing

ALICE-France :

Tier-1: CC-in2p3 + Tier-2: 5 sites (IPHC, GRIF, LPC, LPSC, Subatech)

 \rightarrow Pledge : $\mathcal{O}(10\%)$ of the whole ALICE Grid

ALICE (in 2018)

III.5 – ALICE features : Human Ressources

In Run 2 :

ALICE Collaboration : O(1100) authors (Feb. 2018) 628 total M&O-A (Sept. 2017)

ALICE France

- 25 CNRS (+7 CEA)
- 11 University staff,
- 13 PhD Students
- + 22.97 FTE IR+Technicians In2p3 (info basis *≠* NSIP 2017...)
- \rightarrow <u>Construction/operation</u> :
- V0 (among which project leader)
- ITS-Si Strips SSD
- Data Preparation Group DPG (calibration, Quality Assu.)

• Em/DCal

- Computing
- \rightarrow <u>Scientific management in runs 1+2</u> :
- Deputy spokespersons
- Editorial Board members
- Conference Committee members
- Management Board

- \rightarrow <u>Phys Coordination</u> :
- Physics Working Group convenors
- Physics Analysis Group convenors
- Analysis/Internal Review Committees
- 26 / 61

Antonin.MAIRE@cern.ch - ALICE France / Conseil Sci. 2018

µTrk+µTrg (among which project leader)

Part B – run 1+2 outcome

IV.1 - Runs 1+2 : defining usual observables

$$\begin{array}{ll}
\underline{I}_{\bullet} - p_{T} \operatorname{spectra} : & \frac{1}{N_{evt}} \frac{d^{2} N}{dp_{T} dy} = f(p_{T}) \\
\underline{I}_{\bullet vt} & \frac{1}{N_{evt}} \frac{d^{2} N}{dp_{T} dy} = f(p_{T}) \\
\underline{I}_{\bullet vt} & \frac{1}{N_{evt}} \frac{dN}{dy} \\
\underline{I}_{\bullet vt} & \frac{1}{N_{evt}} \frac{dN}{dy} \\
\underline{I}_{\bullet vt} & \frac{1}{N_{evt}} \frac{dN}{dy} \\
\underline{I}_{\bullet vt} & \frac{1}{N_{evt}} \frac{d^{2} N^{AA}}{dp_{T} dy} \\
\underline{I}_{\bullet vt} & \frac{1}{N_{evt}} \frac{1}{N_{evt}} \frac{d^{2} N^{AA}}{dp_{T} dy} \\
\underline{I}_{\bullet vt} & \frac{1}{N_{evt}} \frac{1}{N_{evt}} \frac{1}{N_{evt}} \frac{d^{2} N^{PP}}{dp_{T} dy} \\
\underline{I}_{\bullet vt} & \frac{1}{N_{evt}} \frac{1}{N$$

<u>Notes</u>: $\rightarrow R_{AA} = 1$, if no visible change in AA ... *e.g.* direct photons, W[±], Z⁰

> $\rightarrow R_{AA} > 1$, if enhancement in the AA system *e.g.* strange baryons Λ , Ξ , Ω at low momenta ($p_T < 3 \text{ GeV}/c$)

 $\rightarrow R_{_{AA}} < 1$, if suppression in the AA system *e.g.* $h^{_{\pm}}$, π , K, p, Λ , D, J/ ψ at mid/high $p_{_{T}}$ ($p_{_{T}} > 3-5$ GeV/c)

IV.2 - Runs 1+2: defining usual observables

The 2+2 interleaved families of essential QGP observables :

<u>I.</u> relativistic hydrodynamics of the fireball

explosive emission, isotropic in azimuth (radial flow)

jet quenching, attenuation of high- $p_{\rm T}$ particles ($p_{\rm T} \ge 6-8 \text{ GeV}/c$)

<u>A.</u> via light flavour (*u*,*d*,*s*) <u>B.</u> via heavy flavours (*c*,*b*) : open or hidden

 \rightarrow In the following : sample of major ALICE(-France) results ...

V.1 – Runs 1+2 : *u*,*d*,*s*

V.2 – Runs 1+2 : s, strangeness enhancement, pp to AA

<u>1/</u> Strangeness enhancement

 ∧ with strangeness content

2/ Consistent pattern between Pb-Pb p-Pb pp (!) for a given multiplicity

3/ Comparison with models : Models missing (largely) the data

c.	-	-	-	-	-	-	-	-			-	-	-	-	-	1
			~		-			,		~	-					
			-	Ľ	1		1	/	1	6						
			Ļ	,			1			U						
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1

V.₃ – Runs 1+2 : hydrodynamics, v_n (PID)

ALICE, arXiv:1307.3237

"mass ordering" of v_2 with m_0 in Pb-Pb but also in p-Pb...

ċ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
r.					~			,		~	-					
			-	Ľ)		1		f	5						
1			-	,	<u> </u>	•	1		•	J						
۰.																
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

V.4 – Runs 1+2 : *c*, hidden with *inclusive* J/ ψ , ψ (2S)

V.5 – Runs 1+2 : c(+b), open with prompt D⁰, D⁺, D^{*+}, D_s, ...

V.₆ – Runs 1+2 : high- p_{T} and jets ...

1/ ALICE's say wrt CMS, ATLAS : "lowest high- p_T ", i.e. jet \in [~10-~100 GeV] + its soft components

V.₆ – Runs 1+2 : high- p_{T} and jets ...

2/ ALICE's say wrt CMS,ATLAS : intra-jet PID, PID+jet

V.7 – Runs 1+2 : constraining nPDF (initial state)

V.8 – Runs 1+2 : bottom line

 \rightarrow early 2018, where are we ?

Runs 1+2 not yet finished (*pp+Pb-Pb 2018 still to come*), but the situation is rather clear

<u>**1/ Hydrodynamics**</u> = already into a precision era !

(tremendous improvements over the last years, both in theory and experiments) But, no worry, still some way ahead...

```
<u>2/</u> in-medium energy loss = not yet there but...
LHC = the place to be for hard probes !
```

i) drop of $\sigma_{\text{inclusive jet}} \approx 1/p_T^{\ 8}$ at RHIC Vs. $1/p_T^{\ 4}$ at LHC... = nature makes it easier for high \sqrt{s}

ii) detectors suited for that (see at least ATLAS, CMS)

<u>**3**/</u> the real new thing : AA-like signs at high \sqrt{s} in **small systems** like pp, p-Pb

V.9 – Runs 1+2 : some open questions left

	• •	• 1	
It	nt	ial	state

• What is the fundamental nature of the initial state ? Can <u>hard probes</u> reveal it ?

Equilibration

- Which mecanisms drive a (quantal QCD system) into a (high-T ~equilibrated medium)?
- such an equilibration, possible in <u>small systems</u>?
- <u>or</u> are there elementary QCD mechanisms that mimic the observed collective behaviour ?

Chiral symmetry • Can we prove <u>directly</u> that chiral symmetry is (partially) restored ?

In-medium dynamics

- What does the <u>apparent</u> collective behaviour of c+b tell us ?
- What is the fundamental nature of <u>degrees of freedom</u> relevant for QCD at finite T (partons, quasi-particles, ...)?

Hadronisation • Which processes do create hadrons, <u>flavour by flavour</u>?

Ultimately, which precision do we <u>need to reach</u> in our measurements ? For comparison/test of QGP fundamental properties calculable from first principles (Equation of state, viscostiy, transport coefficient, ...)

\rightarrow Runs 3+4 !

Antonin.MAIRE@cern.ch - ALICE France / Conseil Sci. 2018

Part C – run 3+4 preparation and perspectives

VI.1 – Beyond LS2 : ALICE campaigns in LHC run 3+4

 $= 1 \text{ nb}^{-1} \text{ MB Pb-Pb delivered}$ $\rightarrow 0.1 \text{ nb}^{-1} \text{ recorded}$

 $\frac{\text{Runs } 3+4}{= 10 \text{ nb}^{-1} \text{ MB Pb-Pb delivered}}$ $\rightarrow 10 \text{ nb}^{-1} \text{ recorded}$ Consequence : **50 kHz in Pb-Pb** // ~200 kHz in pp, p-Pb

→ preserve ALICE features (PID, material budget, µ arm, ...)
 + improve tracking precision (ITS, MFT)
 + improve data rate (pile-up challenge)

→ specific data taking strategy :

- "<u>triggerless</u>" readout (small S/S+B \rightarrow ~no online trigger)
- Readout+recorded : <u>50 kHz</u> Min Bias Pb-Pb
 - + a *few 100 kHz* pp, p-Pb collisions Runs 3+4 = 100x Run 2
- no more 8-month/year of pp data taking...

ALICE pp campaign = <u>O(weeks)</u> (*main limit : computing capacity*)

41 / 61

VI.2 – Beyond LS2 : TDRs for run 3+4 detectors

VI.₃ – Beyond LS2 : tracking perf. $y \approx 0$ + forward y

TDR ITS Upgrade - CERN-LHCC-2013-024

VII.1 – Upgrade : ITS+MFT chip, ALPIDE

 sens. layer ⇒ q-collect ⇒ ampli ⇒ analog treat ⇒ A-D conv ⇒ digital proc

 Hybrid pixel sensor →
 sensor:
 +FEE

 CMOS pixel sensor →
 CPS:

Here, **ALPIDE** : 0.18-µm CMOS technology by TowerJazz

CMOS R&D (IPHC, CEA)

 chip pixel size silicon thickness spatial resol°/layer 	1.5 x 3 cm ² 29 x 27 μm ² 50 μm / 100 μm ~5 μm	current SPD hybrid pixels : 50 x 425 μm²
 power density 	< 50 mW/cm ²	
 event-time resol° detection efficiency fake-hit rate NIEL radiation tolrce TID radiation tolerance 	~2-5 μs >99% << 10 ⁻⁶ /event/pixel >1.7 10 ¹³ 1MeV n _{eq} /cm ² >2.7 Mrad	asynchronous sparsified readout \rightarrow tracking will rely on (space <u>+time stamp</u>) info
		<i>NB</i> : no more dE/dx information, unlike current SDD, SSD

VII.2 – Upgrade : ITS characteristics

3 technologies : pixels, drifts, strips 6 layers

•
$$x/X_0$$
 (per layer) $\ge 1.1\%$
 $\rightarrow x/X_0$ (ITS) ~ 7.4%

Single technology : CMOS (ALPIDE) 7 layers • IB, Layer 0,1,2 : x/X_0 (per layer) ~0.3% • OB, Layer 3,4,5,6 : x/X_0 (per layer) ~0.8% $\rightarrow x/X_0$ (ITS) ~ 6.9%

VII.3 – Upgrade : ITS+MFT

ITS+MFT commonalities

- both equipped with ALPIDE chips
- mechanical structure and services bound together
- Removal possibility during annual shut down

A first difference

ITS = 9.4 m²
= industrial production (73% of active surface for the last 2 layers)

• MFT = 0.4 m² = 5% of ITS surface

VII.4 – Upgrade : MFT

MFT = vertexing ahead of μ spectrometer -3.6 < η < -2.5

(NB : in front of absorber, no sensitive magnetic field)

Components : 5 disks split into 2 halves each disk = 2 sides of detection

280 ladders out of 920 silicon sensors (2 to 5 chips/ladder) 0.6 $\%~x/X^{\rm 0}$ per disk

NB : MFT doses O(700 krad) over 10 years of operation, ~same ballpark as ITS inner layer

10/11	
· /X / 61	
· 40/01	
1	

+ Read-out : firmware of Common Readout Unit CRU (LPSC)

LPSC :

assembly tool

IPHC :

module assembly

~400 modules /~2500

(2x7 chips glued, bonded on *flexible circuit*)

• Coordination WG tracking/simul°/phys perf.

- Project leader
- Full detector construction
- → 8 out of 9 WG led by In2p3/CEA staff
- Coordination WG tracking/simul°/phys perf.

ċ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
ι.				-	~		,			-	-					
۰.			L	1	n		1		ŀ	•	T					
			-	,	υ		/		L	,	1					
۰.																
-	-	-	-	-					-	-	-	-	-	-	-	-

<u>µTrk</u> IPNO (+ CEA)

• the whole Read-out electronics

= 20 000 cards DualSampa

LPSC : • assembly tool IPHC : • module assembly ~400 modules /~2500 (2x7 chips glued, bonded on flexible circuit) • Coordination WG

• Coordination WG tracking/simul°/phys perf.

- Project leader
- Full detector construction
- \rightarrow 8 out of 9 WG led by In2p3/CEA staff
- Coordination WG tracking/simul°/phys perf.

Total cost : 1.596 MCHF μTrk 677 kCHF μID *In2p3 :* 646 k€ μTrk 430 k€ μID

52 / 61

- μID LPC + Subatech
- Front-End (FEERIC)
- the whole Read-out electronics
- = 250 cards

<u>μTrk</u> IPNO (+ CEA)

- the whole Read-out electronics
- = 20 000 cards DualSampa

+ Read-out : firmware of Common Readout Unit CRU (LPSC)

VIII.1 - Run-3+4 physics : (fwd y) physics-case summary

		Ν	IUON only	MU	JON + MFT
	Observable	$p_{\rm T}^{\rm min}$ (GeV/c)	uncertainty	$p_{\rm T}^{\rm min}$ (GeV/c)	uncertainty
Prompt/non-prompt 1/1/	Inclusive $J/\psi R_{AA}$	0	5% at 1 GeV/c	0	5% at 1 GeV/c
$\frac{1}{2}$	$\psi' R_{AA}$	0	30% at 1 GeV/c	0	10% at 1 GeV/c
Ψ(23)	Prompt $J/\psi R_{AA}$		not accessible	0	10% at 1 GeV/c
	J/ψ from <i>b</i> -hadrons		not accessible	0	10% at 1 GeV/c
Heavy-Flavour μ	Open charm in single μ			1	7% at 1 GeV/c
	Open beauty in single μ			2	10% at 2 GeV/c
	Open HF in single μ no c/b separation	4	30 % at 4 GeV/c		
Low-mass μμ	Low mass spectral func. and QGP radiation		not accessible	1–2	20% at 1 GeV/c
				Tab	01
				Loi - C	I MFT ERN-LHCC-2013-01

VIII.2 – Run-3+4 physics : (fwd y) physics-case examples

VIII.3 – Run-3+4 physics : (y \approx 0) example, D in Pb-Pb

VIII.4 – Run-3+4 physics : (y \approx 0) example, B⁺ in Pb-Pb

VIII. 5 – Run-3+4 physics : (y \approx 0) physics-case summary table

	Current, $0.1 \mathrm{nb}^{-1}$		Upgrade, $10 \mathrm{nb}^{-1}$	
Observable	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical	$p_{\mathrm{T}}^{\mathrm{min}}$	statistical
	(GeV/c)	uncertainty	(GeV/c)	uncertainty
	Heavy Flav	vour		
D meson R_{AA}	1	10%	0	0.3%
D_s meson R_{AA}	4	15%	< 2	3 %
D meson from B R_{AA}	3	30%	2	1 %
J/ψ from B R_{AA}	1.5	$15 \% (p_{T}-int.)$	1	5 %
B ⁺ yield	not a	accessible	2	10 %
$\Lambda_{ m c} R_{ m AA}$	not a	accessible	2	15 %
$\Lambda_{\rm c}/{\rm D}^0$ ratio	not a	accessible	2	15 %
$\Lambda_{\rm b}$ yield	not a	not accessible		20~%
D meson $v_2 (v_2 = 0.2)$	1	10%	0	0.2%
$D_s meson v_2 (v_2 = 0.2)$	not a	accessible	< 2	8 %
D from B v_2 ($v_2 = 0.05$)	not a	accessible	2	8 %
J/ψ from B v_2 ($v_2 = 0.05$)	not a	accessible	1	60%
$\Lambda_{\rm c} v_2 (v_2 = 0.15)$	not a	accessible	3	20%
	Dielectrons			
Temperature (intermediate mass)	not a	accessible		10 %
Elliptic flow $(v_2 = 0.1)$ [4]	not accessible			10%
Low-mass spectral function [4]	not a	accessible	0.3	20~%
	Hypernuc	elei		
$^{3}_{\Lambda}$ H yield	2	18%	2	1.7%

Antonin.MAIRE@cern.ch - ALICE France / Conseil Sci. 2018

VIII.6 – Run-3+4 physics : high-multiplicity pp

HL-LHC Wkshop

Multiplicity dependence extension

```
further for \Xi, \Omega?
further for J/\psi ?
further for D mesons?
+ a 1<sup>st</sup> time for light nuclei produced d,t, <sup>3</sup>He, <sup>A</sup><sub>2</sub>H
```

58 / 61

Wrap-up (1): Heavy-Ion standard model

 • « QCD at finite temperature » :
 → Extension of Standard Model

i) How does a *N*-body dynamics emerge from elementary QCD interaction
ii) How it further evolves...

- Ongoing effort pursued over the next decade :
 - \rightarrow detailed++ understanding of QCD dynamics, from AA to pp
 - \rightarrow Systematic characterisation, towards textbook measurements ("precision era" for Runs 3+4)

Wrap-up (2) : particles of interest through LHC runs

(heavy-)flavour physics : u,d,s,c,b (t) behaviour wrt collectivity

Means : a full span of multi-differential analyses, in small (pp, p-Pb) and large (Pb-Pb) systems $d^2 N(PID)/dp_T dy = f(event activity) + v_n(PID) + azimuthal correlations + ...$

ALICE reach in Runs 1+2

 $\pi^{+} \underline{\pi}^{0} K^{+} \underline{K}^{0}_{s} \dots p \underline{\Lambda} \underline{\Xi}^{-} \underline{\Omega}^{-} \dots$ $\underline{\eta}(547) \underline{\omega}(782) K^{0}(892) \underline{\phi}(1020) \Sigma^{\pm}(1385) \Lambda(1520) \Xi^{0}(1530)$ $d t^{3}He^{4}He^{-3}_{\Lambda}H \dots$ $(\underline{D}^{0} D^{+} D^{*+} \underline{D}_{s}) \dots \underline{J}/\underline{\psi} \chi_{ci} \underline{\psi}(2S) \dots \Lambda_{c}^{+} \underline{\Xi}_{c}$ $\underline{heavy-flavour} (\underline{\mu}^{\pm}, e^{\pm})$ $B^{0} B^{\pm} B^{0}_{s} \dots \underline{Y}(1S, 2S, 3S)$ $\underline{\chi} \underline{W}^{\pm} \underline{Z}$

ALICE reach in Runs 3+4

 $\pi^{+} \underline{\pi}^{0} \operatorname{K}^{+} \underline{\operatorname{K}}^{0}_{s} \dots p \underline{\Lambda} \underline{\Xi}^{-} \underline{\Omega}^{-} \dots$ $\underline{\eta}(547) \underline{\omega}(782) \operatorname{K}^{0}(892) \underline{\phi}(1020) \Sigma^{\pm}(1385) \Lambda(1520) \underline{\Xi}^{0}(1530)$ $d t ^{3}\text{He} ^{4}\text{He} ^{3}_{\Lambda}\text{H} \dots$ $(\underline{D}^{0} D^{+} D^{*+} \underline{D}_{s}) \dots \underline{J}/\underline{\psi} \chi_{Ci} \underline{\psi}(2S) \dots \Lambda_{C}^{-+} \underline{\Xi}_{C}$ $\underline{heavy-flavour} (\underline{\mu}^{\pm}, e^{\pm})$ $B^{0} B^{\pm} B^{0}_{s} \dots \underline{Y}(1S, 2S, 3S)$ $\underline{\chi} \underline{W}^{\pm} \underline{Z}$

Colour conventions :

- investigations for large parts already explored or in full swing
- : tackled but further precision needed/expected
- missing (limited by statistics or detector capabilities)

<u>Underlined</u> : with French contributions

Wrap-up (3) : ALICE(-France) take in that matter

ALICE in the characterisation of "QCD at finite temperature" :

- 1/ low + intermediate p_{T} focus
- 2/ PID
- 3/ systematism of the measurements,

complete panel of measurements, accessible and competitive

 \forall y? → ALICE : mid (|y| < 0.9-1.2) and (µ) forward (-4//-3.6< y < -2.5) \forall p_T? → ALICE : p_T ≥ 0 GeV/c \forall system? → ALICE : pp, p-Pb, ..., Pb-Pb \forall event activity? → ALICE : pp, p-Pb, ... / Pb-Pb : 100-90% → 0.5-0% centrality

ALICE-France in that enterprise :

1/ past and future hardware/software <u>commitments</u> and responsabilities
 e.g. (ITS, MFT, μ arm, EmCal/DCal) construction, read-out, operation, calibration, tracking ...

2/ physics <u>analyses</u> on various + complementary fronts to elaborate a same and consistent global understanding