Revue d'expériences

Recherche de la double décroissance beta sans émission de neutrino

Y. LEMIÈRE

25 Octobre 2018

UNIVERSITÉ CAEN NORMANDIE

▲□▶ ▲□▶ ▲目▶ ▲目≯ ●○○

Revue d'expériences └─ Motivation

La double décroissance β

$$_{Z}X \longrightarrow _{Z+2}Y + 2\beta^{-} + 2\bar{\nu_{e}}$$

•
$$T_{1/2}^{2
u} \in [10^{18} ; 10^{24}]$$
 années

< E > < E > E| = のQ ()

Revue d'expériences └─ Motivation

La double décroissance β

 $_{Z}X \longrightarrow _{Z+2}Y + 2\beta^{-} + 2\bar{\nu_{e}}$

- Mesuré pour \sim 30 isotopes
- $T^{2
 u}_{1/2} \in [10^{18}~;10^{24}]$ années

$$_{Z}X \longrightarrow _{Z+2}Y + 2\beta^{-}$$

- $\Delta L = 2$
- $\overline{\nu} \equiv \nu$
- m_{ββ}
- Hiérarchie de masse IH vs NH

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\Rightarrow~T_{1/2}^{0
u}>10^{26}$ années

Signature expérimentale

Autorisé par le MS

2 électrons $\Rightarrow \sum E_e \in [0; Q_{\beta\beta}]$

2 électrons
$$\Rightarrow \sum {\sf E}_e = {\sf Q}_{etaeta}$$

Y. LEMIÈRE

ъ

Choix de l'isotope

$$(T^{0
u}_{1/2})^{-1} = G_{0
u} |\mathcal{M}_{0
u}|^2 |m_{\beta\beta}|^2$$

lsotope	${\it Q}_{etaeta}$ [MeV]	$G_{0\nu}$ [10 ⁻¹⁵ y ⁻¹]	$T_{1/2}^{2\nu}$ [y]	AN [%]
⁴⁸ Ca	4,274	24,81	$4,4\pm 0,6 imes 10^{19}$	0,187
⁷⁶ Ge	2,039	2,36	$1,4\pm0,5 imes10^{21}$	7,61
⁸² Se	2,996	10,16	$9,6\pm1,0 imes10^{19}$	8,73
⁹⁶ Zr	3,348	20,58	$2,2\pm0,3\times10^{19}$	2,8
¹⁰⁰ Mo	3,035	15,92	$7,2\pm 0,5 imes 10^{18}$	9,63
¹¹⁶ Cd	2,805	16,70	$2,9\pm0,3\times10^{19}$	7,49
¹³⁰ Te	2,529	14,22	$7,0\pm1,4 imes10^{20}$	34,1
¹³⁶ Xe	2,462	14,58	$2,2\pm 0,1 imes 10^{21}$	8,9
¹⁵⁰ Nd	3,368	63,03	$9,1\pm 0,7 imes 10^{18}$	5,6

- grand $Q_{etaeta}
 ightarrow$ au-delà de la radioactivité naturelle
- $G_{0\nu}$ et $|\mathcal{M}_{0\nu}|$ élevé
- $T_{1/2}^{2\nu}$ le plus long possible
- Abondance naturelle favorable

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Choix de l'isotope

$$(T^{0
u}_{1/2})^{-1} = G_{0
u} |\mathcal{M}_{0
u}|^2 |m_{\beta\beta}|^2$$

lsotope	${\it Q}_{etaeta}$ [MeV]	$G_{0\nu}$ [10 ⁻¹⁵ y ⁻¹]	$T_{1/2}^{2\nu}$ [y]	AN [%]
⁴⁸ Ca	4,274	24,81	$4,4\pm 0,6 imes 10^{19}$	0,187
⁷⁶ Ge	2,039	2,36	$1,4\pm0,5 imes10^{21}$	7,61
⁸² Se	2,996	10,16	$9,6\pm1,0 imes10^{19}$	8,73
⁹⁶ Zr	3,348	20,58	$2,2\pm0,3\times10^{19}$	2,8
¹⁰⁰ Mo	3,035	15,92	$7,2\pm0,5 imes10^{18}$	9,63
¹¹⁶ Cd	2,805	16,70	$2,9\pm0,3\times10^{19}$	7,49
¹³⁰ Te	2,529	14,22	$7,0\pm1,4 imes10^{20}$	34,1
¹³⁶ Xe	2,462	14,58	$2,2\pm 0,1 imes 10^{21}$	8,9
¹⁵⁰ Nd	3,368	63,03	$9,1\pm 0,7 imes 10^{18}$	5,6

- grand $Q_{etaeta}
 ightarrow$ au-delà de la radioactivité naturelle
- $G_{0\nu}$ et $|\mathcal{M}_{0\nu}|$ élevé
- $T_{1/2}^{2\nu}$ le plus long possible
- Abondance naturelle favorable

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Choix de l'isotope

$$(T^{0
u}_{1/2})^{-1} = G_{0
u} |\mathcal{M}_{0
u}|^2 |m_{\beta\beta}|^2$$

Avec m $_{etaeta}$ = 50 meV, pour le 150 Nd					
${\sf T}^{0 u}_{1/2}=$ 1,8 10^{26} années =	\rightarrow \simeq	1 décroissance/an/100 kg			

- grand ${
 m Q}_{etaeta}
 ightarrow$ au-delà de la radioactivité naturelle
- $G_{0
 u}$ et $|\mathcal{M}_{0
 u}|$ élevé
- $T_{1/2}^{2\nu}$ le plus long possible
- Abondance naturelle favorable

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quelques sites souterrains

315

Quelques sites souterrains

Quelques expériences

Rev

ue	d'expérie	ences		6 / 23
		· • • · ·		2.25

212

Quelques expériences

Expérience	lsotope	Masse	BDF	$T_{1/2}^{0\nu}$	m _{ββ}
Technique		kg	cps/(keV_kg_an)	années	meV
Liquide scintillant					
KamLAND-ZEN	¹³⁶ Xe	300	1,510 ⁻⁵	1,07 10 ²⁶	< 61-165
SNO+*	¹³⁰ Te	1300		1,9 10 ²⁶	< 44-110
HpGE					
GERDA	⁷⁶ Ge	35	$5,7 \ 10^{-4}$	0,9 10 ²⁶	< 120-260
MAJORANA		44	1,6 10 ⁻³	1,9 10 ²⁵	< 240-520
Bolomètre scintillant					
CUPID-0	⁸² Se	5,13	3,6 10 ⁻³	2,4 10 ²⁴	< 376-770
CUORE*	¹³⁰ Te	200	$1,4 \ 10^{-2}$	10 ²⁶	< 110-520
ТРС					
EXO	¹³⁶ Xe	100	1,7 10 ⁻³	3,7 10 ²⁵	< 147-398
NEXT*		100	$4 \ 10^{-4}$	2,8 10 ²⁵	< 120
Tracko-Calo					
SuperNEMO*	⁸² Se	100	10-4	10 ²⁶	< 50-100

Revue d'expériences

◆□> ◆□> ◆目> ◆目> ●目目 のへで

Les liquides scintillants - KamLAND-Zen

Les liquides scintillants - KamLAND-Zen

Avantages

- Détecteur existant
- Masse importante d'isotope
- Veto actif
- Bl $\sim 10^{-5}$ coups/(keV.kg.an)

Inconvénients

- Résolution en énergie modeste
- $Q_{\beta\beta}(^{136}Xe) = 2462 \text{ keV}$
- I $_\mu \sim 160~\mu/m^2/j$

Meilleure sensibilité : $T^{0
u}_{1/2}>1,07~10^{26}$ années m $_{etaeta}<61\text{--}160~\mathrm{meV}$

◆圖→ ◆문→ ◆문→ 문士

Les liquides scintillants - KamLAND-Zen

Avantages

- Détecteur existant
- Masse importante d'isotope
- Veto actif
- Bl $\sim 10^{-5}$ coups/(keV.kg.an)

Inconvénients

- Résolution en énergie modeste
- $Q_{\beta\beta}(^{136}Xe) = 2462 \text{ keV}$
- I $_\mu \sim 160~\mu/m^2/j$

 $\begin{array}{l} \mbox{Meilleure sensibilité}:\\ T^{0\nu}_{1/2}>1,07\;10^{26}\;\mbox{années}\\ \mbox{m}_{\beta\beta}<61\mbox{-}160\;\mbox{meV} \end{array}$

→ ★ 문 → ★ 문 → _ 문 님 .

L'étape suivante pour les liquides scintillants

▲글▶ ▲글▶ 글|

Les semi-conducteurs - Gerda

Y. LEMIÈRE

Revue d'expériences

Les semi-conducteurs - Gerda

Avantages

- Gerda $\frac{\Delta E}{E} \sim$ 0,14 % à Q $_{\beta\beta}$
- $\varepsilon\sim$ 70-90 %
- Identification (Pulse Shape Analysis)

Inconvénients

- $Q_{\beta\beta}(^{76}Ge) = 2039 \text{ keV}$
- $G_{0\nu}$ défavorable

Dernier résultat : $T^{0
u}_{1/2}>0,9\;10^{26}$ années ${
m m}_{etaeta}<120$ -260 meV

Les semi-conducteurs - Gerda

Avantages

- Gerda $\frac{\Delta E}{E} \sim$ 0,14 % à Q $_{\beta\beta}$
- $\varepsilon\sim$ 70-90 %
- Identification (Pulse Shape Analysis)

Inconvénients

- $Q_{\beta\beta}(^{76}Ge) = 2039 \text{ keV}$
- $G_{0\nu}$ défavorable

 $\begin{array}{l} \text{Dernier résultat}:\\ \mathcal{T}_{1/2}^{0\nu} > 0.9 \; 10^{26} \; \text{années} \\ \text{m}_{\beta\beta} < 120\text{-}260 \; \text{meV} \end{array}$

L'étape suivante pour les semi-conducteurs

Le meilleur de Gerda et de Majorana

Large Enriched Germanium Experiment for Neutrinoless - LEGEND

A = A = A = A = A = A = A

Les bolomètres scintillants - CUORE

ъ

Les bolomètres scintillants - CUORE

Avantages

- $\frac{\Delta E}{E} \sim 0.2$ % à Q_{$\beta\beta$}
- Étude de plusieurs isotopes ¹³⁰Te, ⁸²Se, ¹⁰⁰Mo ...
- Bolomètre et Scintillation Identification des fonds

Inconvénients

- Cryostat
- (Identification des fonds)

Dernier résultat : $T^{0
u}_{1/2}(^{82}Se) > 2,4 \ 10^{24}$ années m $_{etaeta} < 376$ -770 meV exposition = 1,83 kg.an

Les bolomètres scintillants - CUORE

Avantages

- $\frac{\Delta E}{E} \sim 0.2$ % à Q_{$\beta\beta$}
- Étude de plusieurs isotopes ¹³⁰Te, ⁸²Se, ¹⁰⁰Mo ...
- Bolomètre et Scintillation Identification des fonds

Inconvénients

- Cryostat
- (Identification des fonds)

Dernier résultat : $T_{1/2}^{0\nu}(^{82}Se) > 2,4 \ 10^{24}$ années $m_{\beta\beta} < 376-770 \ meV$ exposition = 1,83 kg.an

L'étape suivante pour les bolomètres

CUPID

- Bolomètres scintillants
- Cryostat de CUORE
- $\bullet~ex$: ^{82}Se : m \approx 330 kg
- BI \sim 2 10^{-5} coups/(keV.kg.an)
- $T_{1/2}^{0
 u} > 10^{28}$ années m $_{etaeta} < 10$ meV
- Démarrage > 2022

Element	material	contamination	Te	Se/Cd/Mo	
		[Bq/kg]	[cnts/ton/y]		
	Far	Sources			
238U external shield	lead	$< 1 \times 10^{-5}$	$< 7 \times 10^{-3}$	$< 4 \times 10^{-3}$	
232Th external shield	lead	$< 7 \times 10^{-5}$	< 1	$< 1 \times 10^{-2}$	
238U 300 K top plate	stainless steel	$< 2 \times 10^{-4}$	$< 5 \times 10^{-4}$	$< 3 \times 10^{-4}$	
232Th 300 K top plate	stainless steel	$< 1 \times 10^{-4}$	$< 3 \times 10^{-2}$	$< 3 \times 10^{-4}$	
238U cryostat elements	copper	$< 7 \times 10^{-5}$	$< 4 \times 10^{-1}$	$< 3 \times 10^{-1}$	
232Th cryostat elements	copper	$< 2 \times 10^{-6}$	$< 3 \times 10^{-1}$	$< 1 \times 10^{-2}$	
238U internal shield	copper	$< 7 \times 10^{-5}$	< 1	$< 6 \times 10^{-1}$	
232Th internal shield	copper	$< 2 \times 10^{-6}$	$< 8 \times 10^{-1}$	$< 8 \times 10^{-3}$	
238U 30 cm disk	lead	$< 1 \times 10^{-5}$	$< 1 \times 10^{-3}$	$< 7 \times 10^{-4}$	
232Th 30 cm disk	lead	$<7\times10^{-5}$	$< 2 \times 10^{-1}$	$< 2 \times 10^{-3}$	
	Near	Sources			
238U detector holders	copper	$< 7 \times 10^{-5}$	< 2	< 1	
232Th detector holders	copper	$< 2 \times 10^{-6}$	$< 1 \times 10^{-1}$	$< 2 \times 10^{-1}$	

CUORE Upgrade with Particle Identification - CUPID

Les chambres à projection temporelle - EXO

Y. LEMIÈRE

Revue d'expériences

16 / 23

Les chambres à projection temporelle - EXO

Avantages

- Ionisation et scintillation Calorimètrie et localisation 3D
- Identification SS/MS

Inconvénients

- Xe liquide \rightarrow Cryostat
- Laboratoire WIPP
- Émanation de Radon

Dernier résultat : $T^{0
u}_{1/2} > 3,7 \, 10^{25}$ années m $_{etaeta} < 147-398$ meV BI = 1,7 10⁻³ coups/(keV.kg.an)

Y. LEMIÈRE

Les chambres à projection temporelle - EXO

Avantages

- Ionisation et scintillation Calorimètrie et localisation 3D
- Identification SS/MS

Inconvénients

- Xe liquide \rightarrow Cryostat
- Laboratoire WIPP
- Émanation de Radon

Dernier résultat : $T_{1/2}^{0\nu} > 3,7 \ 10^{25}$ années $m_{\beta\beta} < 147-398 \ meV$ Bl = 1,7 10^{-3} coups/(keV.kg.an)

L'étape suivante pour les chambres à projection temporelle

nEXO

- Installation à SNOLAB
- 136 Xe : m \approx 5000 kg
- Identification du ¹³⁶Ba
- Extensibilité du détecteur?
- Émanation du radon . . .
- Bl $\sim 10^{-4}$ coups/(keV.kg.an)
- $T_{1/2}^{0
 u}>10^{28}$ années m $_{etaeta}<15$ meV

(日本) (日本)(日本)

Prospectives

Supposons $m_{\beta\beta} = 5 \text{ meV}$

Que peut-on attendre avec 10 tonnes d'isotopes durant 10 ans?

lsotope	$T_{1/2}$	$N_{\beta\beta}$	N _{decay}
	[10 ²⁸ années]	[10 ²⁸ isotopes]	-
⁷⁶ Ge	~ 50	7,9	~ 1
⁸² Se	\sim 6	7,4	~ 5
¹³⁰ Te	~ 8	4,5	\sim 4
¹³⁶ Xe	~ 8	4,5	\sim 4
¹⁵⁰ Nd	~ 2	4	~ 13

- Excellent $\frac{\Delta E}{F}$
- BDF_{ROI} proche de 0
- Un laboratoire profond et vaste

Prospectives

Supposons $m_{\beta\beta} = 5$ meV

Que peut-on attendre avec 10 tonnes d'isotopes durant 10 ans?

lsotope	$T_{1/2}$	$N_{\beta\beta}$	N _{decay}
	[10 ²⁸ années]	[10 ²⁸ isotopes]	-
⁷⁶ Ge	~ 50	7,9	~ 1
⁸² Se	\sim 6	7,4	~ 5
¹³⁰ Te	~ 8	4,5	\sim 4
¹³⁶ Xe	~ 8	4,5	\sim 4
¹⁵⁰ Nd	~ 2	4	~ 13

- Excellent $\frac{\Delta E}{E}$
- BDF_{ROI} proche de 0
- Un laboratoire profond et vaste

(日) (同) (目) (日) (日) (日) (0)

Les liquides scintillants

Y. LEMIÈRE

Les liquides scintillants

Les semi-conducteurs ⁷⁶Ge

Hiérarchie de masse

