

EDELWEISS

Report on EDELWEISS-III

WIMP masses 4-20 GeV/c²

Perspectives of the low-mass program

WIMP masses 0.5-5 GeV/ c^2 and below

Jules Gascon (IPNLyon, Université Lyon 1 + CNRS/IN2P3)

EDELWEISS - CS in2p3

~GeV range new hunting ground for WIMPs

- Absence of minimal SUSY signals at LHC
- No signals in 10 GeV/c² 10 TeV/c² range (LUX, PandaX, XENON)
- Searches extended to generic DM particle interacting with nuclei

Future projects for SubGeV range

- Cryogenic experiments: SuperCDMS (SNOLAB), CRESST (LNGS)
- Others (limited to ~1 GeV/c²): DarkSide, DAMIC-M

Limitations:

- Backgrounds (internal bkgs in CRESST)

- *Ion. quenching uncertainties* Ge/Si/Ar

Serious issue: Lack of nuclear recoil discrimination at low energy

EDELWEISS : phase III vs low-mass program

EDELWEISS-III (2010-2015)

- Original ANR (2010) objective: WIMPs > 10 GeV/c²
- 2012 updated objective (Oct. CSin2p3): 5-20 GeV/c²
- Largest mass of cryogenic Ge (30 kg) for DM search
- Difference from CDMS:
 - Emphasis on ionization signal for surface discrimination
 - Simpler heat signal readout, for scalability & optimal ionization readout (... and detector operation & calibration)
- Data taking ended in 2015 with 3000 kg.d (8 kg.y)
 EDELWEISS Low-mass program (since 2016)
- R&D program for GeV/c² -> subGeV/c² WIMP mass range
- Second part of presentation

EDELWEISS-III collaboration

October 25th, 2018

EDELWEISS Setup

- LSM: Deepest site in Europe 4800 m.w.e., 5 μ/m²/day
- Clean room + deradonized air
 Radon monitoring down to few mBg/m³
- Active muon veto (>98% coverage)
- External (50 cm) + internal polyethylene shielding
 Thermal neutron monitoring with ³He detector
- Lead shielding (20 cm, incl. 2 cm Roman lead)
- Selection of radiopure material

Cryostat can host up to 40 kg detector at 18 mK

Performance of the EDELWEISS-III experiment for direct dark matter searches

[JINST 12 (2017) P08010]

October 25th, 2018

EDELWEISS-III detectors (CSNSM design)

 $\epsilon_{\gamma}/\epsilon_n$ = ionization quenching Q \rightarrow $E_{ion} = Q E_{recoil}$ in keV_{ee}

• Heat: direct measurement of ALL the energy, irrespective of particle ID

Nuclear recoil identification in EDELWEISS

- Event-by-Event discrimination of Nuclear Recoils (NR) vs Electron Recoils (ER): simultaneous measurement of ionization + heat signals
- True recoil energy can be obtained from heat and ionization signals irrespective of quenching Q:

$$E_{phonon} = E_{recoil} + heating due to charge drift in \overrightarrow{E}_{field} (Luke-Neganov effect)$$

= $E_{recoil} + N_{charge} * (Voltage) = E_{recoil} + E_{ion} * (Voltage) / \varepsilon_{\gamma}$

 $E_{recoil} = E_{phonon} - Voltage * (E_{ion}/\epsilon_{\gamma})$ for all types of recoils

Surface event discrimination

- Main limitation of technique: poor charge collection of charge for surface events can mimic the reduced quenching of a nuclear recoil
- EDELWEISS solution: cover entire surface with interleaved ring electrodes (FID800 design)
- Lateral surface also covered (not in CDMS)
- Bulk: collection by C₁+C₂; V₁+V₂ act as veto
- Surface: charges collected by C₁+V₁ or C₂+V₂
- <4x10⁻⁵ rejection of surface events
- <2.5x10⁻⁶ rejection of ER in fiducial volume

[JINST 12 (2017) P08010]

EDELWEISS-III calendar

- 2009-2010: prototype tests
- 2011-2013: detector production
 - One year delay to find new technique to solve problem of unexpected leakage currents between electrodes (now: <0.1 fA)
 - Also: electronic + cryogenic upgrades
- 2013-2014: commissioning
 - Problem with Kapton cables between 10 mK and 1 K: decision to concentrate the repairs for the readout of the 24 detectors with the best performance

2014-2015: 3000 kg.d for physics

Detector performance

24 detectors used for physics

- Best ionization resolution achieved for cryogenic Ge detector: σ_{ion} =230 eV_{ee}, uniform performance
- 8 detectors with best σ_{phonon} used for WIMP search (5-20 GeV/c²)
- Main limitation to σ_{phonon} : vibrations
- 19 detectors with best resolutions selected for searches of Axion-Like Particle searches
 & cosmogenic activation studies

8.98 + 10.37 keV cosmic activation doublet

October 25th, 2018

WIMP search: identification of backgrounds

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

Data-driven background models based on sidebands

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

Low-Mass analysis

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Improvement by x20 to x150 between 7 and 10 GeV wrt EDW-II
- Limited by heat-only background: *identification* and rejection using the $\sigma_{ion} = 230 \text{ eV}_{ee}$ resolution on ionization
- Ionization resolution is key for rejection
- Heat resolution is key for low thresholds

Electron recoil analysis: cosmic activation

- Lowest electron background levels in cryogenic detector (thanks to surface evt rejection + 650 g fiducial volume)
 - 1149 kg.d with 2 keV_{ee} threshold
 - 287 kg.d with 0.8 keV_{ee} threshold
- Analysis of cosmic activation
- Activation of ³H in Ge exposed to hadronic component of cosmic rays is a limiting background for SuperCDMS

- First precise measure of ³H production in Ge: 82±21 atom/kg/d
- Input to SuperCDMS 2016 DOE review
- Measurement of ⁴⁹V, ⁵⁵Fe and ⁶⁵Zn to constrain models

Axion-Like Particle searches

- Extend analysis of electron recoil to higher energy for line search up to 500 keV_{ee}
- Combine heat+ionization signals for optimal ER energy resolution:
 - Baseline $\sigma = 190 \text{ eV}_{ee}$
 - Proportional term = 1.2%
- Intensities of observed peaks consistent with known Th/U lines

[ArXiv:1808.02340, accepted by PRD]

ALP & dark photons results

Conclusions on EDW-III + evolution

- Excellent performance of surface + ER rejection via ionization
- Ionization resolution is essential for rejection of ER backgrounds (either event-by-event or statistically, via likelihood)
- Heat resolution (and exposure) limited by cryogenic noise
- NR backgrounds: too large for searches with M_{WIMP} > 10 GeV/c², not a problem for lighter masses
- Large Heat-Only event background: studied and parameterized in next phase (EDELWEISS-LT)
- Study of impact of improvement of resolution on physics reach:
 x5 on heat, x2 on ion. explored in projection paper [PRD 97 (2018) 022003]

EDELWEISS Low-Mass program

- Progressing below 1 GeV/c² and 10⁻⁴³ cm² requires a new generation of detectors with event-by-event rejection – not yet available
- Reaching 10^{-43} cm² at 1 GeV/c² requires an exposure of 1 kg.y with a detector with $\sigma_{phonon} = 10$ eV and $\sigma_{ion} = 20$ eV_{ee} (assuming Lindhard Q)

Objective of low-mass program

- 3 tasks indentified by the collaboration
 - Heat resolution: $\sigma_{phonon} = 10 \text{ eV}$ (also: V = 100 Volt)
 - Ionization resolution: σ_{ion} = 20 eV_{ee}
 - Cryogenics adapted to these performance
- Demonstrator: operation at LSM of a kg-size array of detectors with $\sigma_{phonon} = 10$ eV and $\sigma_{ion} = 20$ eV_{ee} with either event-by-event or statistical discrimination, with the objective to probe cross-section values of 10^{-43} cm² below 1 GeV/c²
- First application: measure quenching for ~100 eV recoils (directly, not using extrapolation models)

Nuclear recoil identification in EDELWEISS

• Event-by-Event:

simultaneous measurement of ionization + heat signals Statistical: compare populations at low & high V bias: "Luke-Neganov" portion of thermal signal proportional to ionization yield quenching

First study: EDELWEISS-LT

 Luke-Neganov boost to amplify signal (and not noise) on existing FID800 detectors [E. Queguiner PhD thesis, Oct. 23rd 2018]

- 2 FIDs, σ_{phonon} = 1.0 and 0.35 keV, V_{bias} = 100 V and 30 V
- σ_{ion} essential for full characterization
 of bkgs with 8 V data
- Does provide the expected statistical discrimination of all bkgs
- Next step: improve phonon resolution

Heat resolution progress

EDELWEISS-Surf limit

- Achieved resolution on a smaller detector exceeds by x5 the original LT goal with 800 g detectors
- Best above-ground limit down to 600 MeV/c²:
- First sub-GeV limit with Ge, down to 500 MeV/c²
- Opens the way for the
 0.1 1 GeV/c² range
- Small detectors with lower thresholds to be combined with expertise acquired on HV: threshold reduction by factor (1+V/3) in keV_{ee}

Comparison of 20-50-100 eV

- The use of small detector mass is not an obstacle to low-mass WIMP searches, if it improves the phonon resolution
- For $M_{WIMP} < 1 \text{ GeV/c}^2$, the gain in efficiency and threshold from improving

Ionization improvements

- Cold front-end: replace JFET @100K with HEMT (High Electron Mobility Transistor) @4K
- Can be operated at 4K: shorter cabling -> reduced capacitance -> better signal/noise
- Successful HEMT amplifier with sub-100 eV resolution operated on a CDMS-II detector
 [A. Phipps et al., arXiv:1611.09712]
 2 mm spacing → 4 mm
- EDELWEISS electrode design with lower capacitance:
 2 → 4 mm spacing already achieved. Goal: reach 50 eV_{ee}.

2 mm spacing \rightarrow 4 mm spacing

A 32 g detector with $\sigma_{ion} = 20 \text{ eV}_{ee}$ and $\sigma_{phonon} = 20 \text{ eV}$ would be able to measure directly the ionization yield of 100 eV nuclear recoils with present bkg conditions at LSM

October 25th, 2018

Ionization improvements

- Cold front-end: replace JFET @100K with HEMT (High Electron Mobility Transistor) @4K
- Can be operated at 4K: shorter cabling -> reduced capacitance -> better signal/noise
- Successful HEMT amplifier with sub-100 eV resolution operated on a CDMS-II detector [A. Phipps et al., arXiv:1611.09712]
- EDELWEISS electrode design with lower capacitance: $2 \rightarrow 4$ mm spacing already achieved. Goal: reach 50 eV_{ee}.

2 mm spacing \rightarrow 4 mm spacing

EDELWEISS-DMB8:

Operation of a 200 kg array @8V (with nuclear recoil discrimination) in the improved background environment of SuperCDMS @ SNOLAB

Probing the region of the coherent scattering of ⁸B solar v's with resolution and discrimination

Low-mass program calendar

2019-2020

• Development of a 32 g FID detector at CSNSM and IPNL. Objective: $\sigma_{phonon} = 10 \text{ eV}$ and $\sigma_{ion} = 20 \text{ eV}_{ee}$.

 \rightarrow Collaboration with RICOCHET-France

- Upgrade of cryogenics at LSM
 - \rightarrow Collaboration with CUPID-France and LSM platform
- ANR MIYLEN: Measure ionization yield @ LSM with 32 g FID + HEMTs
 2021-2022
- Study of scaling to 200 g FIDs (or 800 g for DMB8 option)
- Operation of a 1 kg demonstrator of sub-GeV detectors at LSM, with goal 10⁻⁴³ cm² below 1 GeV/c².
- Definition of a high-impact contribution to the upgrade of SuperCDMS-SNOLAB

EDELWEISS-III

- 48 people, 46% in2p3
- Very strong presence of in2p3 in organigram

SubGeV R&D (LT + beyond)

- 38 people, 55% in2p3
- Reduction of FTE wrt to people involved reflects increased work shared in synergy with RICOCHET and CUPID

EDELWEIS-III

- I.5 M€ investment in 2010-2013
 - 840 k€ from ANR FIDSUSY
 - 80 k€ from IN2P3
- Running costs during physics: 112 k€ /year
 - Average IN2P3 contribution to running costs: 65 k€ /year

EDELWEISS-LT

- Running costs during physics: 105 k€ /year
 - Average IN2P3 contribution to running costs: 50 k€ /year
 - Rising contribution from LUMINEU and CUPID (sharing of cryostat)
 - Similar IN2P3 contribution to detector R&D

Conclusion

EDELWEISS-III

- 8 collaboration papers since 2016 (121 spires citations) and 6 PhDs (incl. 3 IN2P3)
- Successful demonstration of ionization-based rejection of backgrounds
- WIMP and Axion-like particle limits improved wrt EDW-II, first precise measure of ³H cosmic activation rate

EDELWEISS low-mass R&D program

- Goal: develop detector able to probe sub-GeV WIMPs with $\sigma_{SI} < 10^{-43}$ cm² with nuclear recoil discrimination capabilities
- Plan to reach objectives of $\sigma_{phonon}=10 \text{ eV}$, $\sigma_{ion}=20 \text{ eV}_{ee}$, and Luke-Neganov amplification to further reduce experimental thresholds
- EDELWEISS-LT: 100V on detector achieved, competitive limits achieved compared to other cryogenic experiments
- EDELWEISS-Surf: σ_{phonon}=18 eV, best surface limit for WIMPs > 0.6 GeV/c², first Ge limit below 1 GeV.
- kg-size demonstrator @ LSM for 2021-2022