

Direct Dark Matter Search with the experiments from the XENON Collaboration

Dominique Thers

on behalf of the XENON Collaboration on behalf of the XENONnT CNRS MP

	Lab.	Responsible	Researcher	Teacher Researcher	Postdoc	PhD	Engeneer
Since 2009	Subatech	D. Thers	1	3	1	1 +1	0
LPNHE Paris Since 2016	LPNHE	L. Scotto- Lavina	1 +1	0	1	1 +1	0,3
LABORATOIRE DE L'ACCELERATEUR LINEAIRE Since 2017	LAL	C. Macolino	1	0	+1	+1	1,2

Short terms priorities : 1/ Reinforce the LAL group 2/ Consolidate the new researcher @ LPNHE

Universe Matter is Dark at 85%

One century of mystery ...

Dark Matter

- Few hundreds of models to test
- From the smallest to the highest masses in the Universe
 - WIMPs (SUSY) stay the top ranking

Dual phase LXe TPC

XENON collaboration Experiments

XENON1T Experiment

XENON1T SR0+SR1 exposure

> 278 days of exposure (~ 15 months)
 > ~ 1 ton over 1 year, largest exposure
 > Stability checked regularly during all the run
 > Experiment still operating now

Calibration and monitoring of XENON1T with ^{83m}Kr

Energy measurement with XENON1T

Ultra low background in XENON1T

10²

Electronic Recoils Background

- Material γ screening and selection during construction
- ²²²Rn emanation measurements and selection of materials → achieved 10 µBq/kg for ²²²Rn
- online cryogenic distillation → ⁸⁵Kr removal
 - → lowest ER background ever in a DM detector
- Select fiducial volume in the TPC

Nuclear Recoils Background

Source	Fraction of NR _{tot} [%] in 1T FV, (4-40)keV
Radiogenic neutrons	96.5
CEvNS	2.0
Muon-induced neutrons	< 2.0
	JCAP04 (2016) 027

Upcoming analysis of XENON1T data

 10^{23}

XENON1T data are most sensitive to various process

→ exciting analysis options

Examples:

- Double electron capture of ¹²⁴Xe and ¹²⁶Xe →
- Annual modulation
- SD WIMPs
- Low WIMP mass searches (lower threshold, S2 only, ...)
- 0νββ of ¹³⁶Xe
- ••

Long list of topics & priorities **>** stay tuned!

Work in progress for low WIMP mass, annual modulation : Ernesto Lopez Fune (Postdoc)

Jean-Philippe Zopounidis (PhD)

October 25th 2018, CSI IN2P3

E 10²² Gavrilyuk et al. limit 10²¹ <u>XENON100 limit</u> 25 50 75 100 125 150 175 200 live time (d)

XENON1T sensitivity (90% CL)

14

Double β decay in XENON1T

Expected energy resolution $\sim 1\%$ at Q-value

Active target under study

Expected efficiency > 90%

Work in progress :

- Background characterization
- Energy resolution increase

PhD Thesis : Chloé Therreau

XENON1T operation since SR1

Operation of XENON1T until modifications for XENONnT start: ~January 2019 → more data

- tests towards XENONnT
- → improvements

Radon Reduction:

- SR1: (11.8±0.2) μBq/kg
- New radon-free pump (EPJ C 78 (2018) 604) (6.3±0.1) μBq/kg
- Rn reduction by 45% w.r.t SR1

Increased purification gas flow

- increased by 39% w.r.t. Q-drive
- Electron lifetime of 1 ms reached!

Fenches strongly involved

 Online Radon distillation allowed another reduction of ~30% to ~4 μBq/kg → only factor 4 above XENONnT goal

Important improvements for XENONnT

DDM Roadmap and LXe experiments

> XENONnT construction is started ...

XENONnT upgrade

Active French technical contributions :

construction and commissioning of ReStoX2
 TPC electrodes design and assembling
 computing and data processing

Science run expected for end 2019/beginning 2020

XENON1T-nT Computing and data processing

Cost : only in-kind contributions

Resources from CC-IN2P3

- CPU power: 8M HS06 x h (16M requested for 2019)
- Storage : 1.2PB for data and Monte Carlo (tapes+dCache)

The highest contribution in Europe. Comparable with resources provided in US

"offline" data quality monitoring tool development

Human resources:

- Luca Scotto Lavina (also local computing responsible at LNGS)
- O.Dadoun (20%)
- R.Gaior (50%)

Goals :

1) run analysis algorithms to datasets:

xenon purity, radon background, hot-spots search, electronic background, light yield, charge yield, single electrons rate,...

2) output : web interface to provide a quick feedback to shifters

3) alarms : in case some observables deviate from standard values

ReStoX2

XENONnT WG : Subatech, LPNHE, LAL

WG coordinators : Julien Masbou and Luca Scotto-Lavina

Cost : 300 keuros Founded by France : 50% by in2p3 50% by labs (LAL, LPNHE, SUBATECH)

Subdivided in 3 parts :

- Main vessel (SUBATECH)
- heat exchanger (LPNHE)
- valves and piping (LAL)

High Pressure auxiliary vessel

Xenon storage capacity : 10 tons Directly connected to ReStoX1 and TPC Recovering : 1t/hour speed targeted Working temperature : 77K to 20°C Cooled with LN2

ReStoX2 : the race

First upgrade installed for XENONnT (July 2018)

Joaquim Palacio (Postdoc) full time at LNGS (since June) is working on XENONnT commissioning

- High Vacuum reached Outgasing will be accelerated by heating at 70°C until 2019
- First filling expected with 2 tons of Xe from January 2019

The 3 labs respect exactly the expected schedule

XENONNT TPC electrodes design and assembling

XENONNT TPC electrodes construction : the race

Work strated in summer 2017

design, relationship with companies, mechanical simulation, mechanical realization and assembly ...

Prototype tested at LNGS in summer 2018

System feasibility demonstrated
April 2019 : 5 electrodes assembled ...

XENON1T-XENONnT Plans

DARWIN, 40 tons of LXe to reach "neutrino floor" in 2025

the baseline design assumes PMTs but several alternative photosensors are under consideration

- Dual-phase Time Projection Chamber (TPC).
- 50 t total (40 t active) of liquid xenon (LXe).
- Dimensions: 2.6 m diameter and 2.6 m height.
- Two arrays of photosensors (top and bottom).
- 1800 PMTs of 3" diameter (~1000 of 4").
- Drift field ~0.5 kV/cm.
- Low-background double-wall cryostat.
- PTFE reflector panels & copper shaping rings.
- Outer shield filled with water (14 m diameter).
- Inner liquid scintillator neutron veto.

DARWIN

28 groups from 11 countries DARWIN is in the APPEC Roadmap Working toward a CDR and a TDR

In France, R&D on: - large LXe solution for ReStoX mesh electrodes conception and design - xenon from fission with Orano - Modane option if possible extension

DARWIN might be also considered for the official future French Roadmap targeting 2β0v search

Summary

XENON1T:

- continues to operate ~ Jan. 2019
- further important analyses are on the way stay tuned!

XENONnT:

- upgrade is being prepared while XENON1T runs, ReStoX2 already installed
- decommissioning of XENON1T starting Jan. 2019, TPC electrodes should me ready for April 2019, physics run planed for 2019-2020

We wish for a wide support from the In2p3 CSI

We expect to discover Dark Matter directly with the XENON collaboration