Conseil Scientifique de l'IN2P3

October 25th, 2018 Campus Michel-Ange - CNRS Paris

CUPID

A next-generation double-beta-decay experiment prepared by the results and the activities of CUPID-Mo, CUORE, CROSS

Andrea Giuliani (CSNSM) (on behalf of the bolometric Double Beta Decay community in France)

Strategy

Objective

Build a **word-leading** next-generation experiment on $0\nu\beta\beta$ decay: **CUPID**

Strategy

Objective

Build a **word-leading** next-generation experiment on $0\nu\beta\beta$ decay: **CUPID**

Context

- International collaboration (France, Italy, US, China...)
- Drive and leadership roles

from France

Strategy

+

+

=

Objective

Build a word-leading next-generation experiment on $0\nu\beta\beta$ decay: CUPID

How to reach this objective:

R&D on LMO technology

CUORE infrastructure +

Demonstrators

Enrichment/Crystallization

Context

- International collaboration (France, Italy, US, China...)
- Drive and leadership roles from France

Li₂¹⁰⁰MoO₄ scintillating bolometers developed in **ANR LUMINEU** (2012-2017)

CUORE is taking data in LNGS: successful implementation of 1 ton bolometric mass

Test of the technology at the ~10 kg scale **CUPID-Mo** is installed in LSM – two more setups in LNGS, LSC (**ERC CROSS** (2018-2022)

Russian companies

Encouraging results in France with crystals from **ANR CLYMENE** (2016-2020)

Outline

- 1. Challenges in $0\nu 2\beta$ decay and the CUPID way
- 2. Scintillating bolometers made of Li₂¹⁰⁰MoO₄ crystals
- 3. Demonstrators: CUPID-Mo, CROSS and CUPID-Te
- 4. CUPID and its physics reach
- 5. Collaboration, tasks and resources

Standard mechanism: $m_{\beta\beta}$ vs. lightest v mass

Current-generation experiments

Next-generation experiments

Next-generation experiments

Request for the background index

number of background counts

sensitive mass X live time X energy interval

around the region of interest (ROI)

in the source=detector approach with high energy resolution technique

$\Delta E_{FWHM} < 10 \text{ keV}$

zero background at the tonne scale means

 $b \leq 10^{-4}$ [counts/(keV kg y)]

Present record: GERDA (⁷⁶Ge) – b~ 7 x 10⁻⁴ counts/(keV kg y) – ΔE_{FWHM} ~ 3 keV

How we do it: bolometers

CUORE-technology lessons about background

CUORE and its precursors are affected by alpha particle background

Alpha / beta separation

Alphas emit a different amount of light with respect to **beta/gamma** of the same energy (normally lower $\rightarrow \alpha$ QF < 1, but not in all cases) A scatter plot light vs. heat separates alphas from betas / gammas. Scintillation / Cherenkov A bolometric light detector is needed, $0\nu 2\beta$ facing the main crystal region 2615 keV LIGHT SIGNAL MINEU α EVENTS β/γ **EVENTS** HEAT SIGNAL

2. Scintillating bolometers...

The two most promising isotopes: ¹⁰⁰Mo and ¹³⁰Te

R&D activity in France about the bolometric search for double beta decay (2012-2017)

~15 papers in international journals – 4 concluded PhD theses – 3 ongoing

Scintillating bolometers containing the isotope ¹⁰⁰Mo

 $Q_{\beta\beta} = \textbf{3034 keV}$ Favorable nuclear phsyics

Cherenkov bolometers containing the isotope ¹³⁰Te

$$Q_{\beta\beta}$$
 = 2527 keV

Preparing a ¹⁰⁰Mo experiment: LUMINEU

Funding (total envelop ~750 k€) and resources from:

- ANR (France) main fund provider (LUMINEU: 2012-2017)
- CEA-Saclay substantial funds / 2 PhD fellowships
- CSNSM direction funds for crystals (« AP interne »)
- EDELWEISS underground facility, electronics & DAQ
- ISOTTA project ASPERA R&D common call (2012-2014)
- IN2P3 dedicated personnel / PICS
- ▶ KINR Kiev radiopure scintillator know-how, simulation, enriched ¹⁰⁰Mo
- ➢ ITEP Moscow − enriched ¹⁰⁰Mo
- NIIC Novosibirsk crystals
- INFN / LUCIFER underground facility and manpower for R&D

46 participants 30 from France ~28% from IN2P3

AGENCE NATIONALE DE LA RECHERCH

2. Scintillating bolometers...

Li₂¹⁰⁰MoO₄ scintillating bolometers: a mature technology

LUMINEU has succesfully developed the Li₂¹⁰⁰MoO₄ technology

Multiple tests with natural and enriched crystals (2014-2017) in LSM and LNGSwith outstanding results in terms of:EDELWEISS set-up

High-purity crystals \rightarrow Reproducibility \rightarrow Energy resolution \rightarrow α/β separation power \rightarrow Internal radiopurity \rightarrow

- negligible loss of enriched material
- excellent performance uniformity
- ~ 4-6 keV FWHM in Rol
- > 99.9 %
 - < 5 μ Bq/kg in ²³²Th, ²³⁸U; < 5 mBq/kg in ⁴⁰K

➤ Compatible with b ≤ 10⁻⁴ [counts/(keV kg y)]

Li₂¹⁰⁰MoO₄ scintillating bolometers: a mature technology

Crystallization

2. Scintillating bolometers...

The CUPID-Mo demonstrators

CUPID-Mo-LSM (20 crystals)

- 20 ¹⁰⁰Mo-enriched (97%) Li₂MoO₄ (Ø44×45 mm, 0.21 kg each; 4.18 kg total)
 ⇒ ~2.5 kg of ¹⁰⁰Mo
- > 20 Ge light detectors (Ø44×0.175 mm)+SiO
- EDELWEISS set-up @ LSM (France)

COMMISSIONING May - June 2018

CUPID-Mo-LNGS (26 crystals)

- Additional **26 cubic Li₂¹⁰⁰MoO₄** (45x45x45 mm, 0.28 g each)
 - \Rightarrow ~4 kg of ¹⁰⁰Mo
- CUPID-0 set-up @ LNGS (Italy)

PLANNED START DATA TAKING: late 2019

3. Demonstrators...

Assembly and installation of CUPID-Mo-LSM

Elements for a single module

Cleaning and assembly in the LAL clean room

Four modules (one tower) and five towers

Installation in the EDELWEISS cryostat

3. Demonstrators...

CUPID-Mo-LMS (Phase I) Preliminary results at 22 mK

Long delay of the run start due to cryogenics (Nov 2017 \rightarrow Apr 2018)

Preliminary data acquired at 22 mK

 Large microphonic noise, related in part to persisting cryogenic problems
 2 heat channels are lost

In spite of that, satisfactory performance of the detectors

Cryostat failure forced us to stop the run at August 7th, 2018
 Maintenance of the cryostat is now ongoing
 Run resume is foreseen in December 2018

Physics reach of the two CUPID-Mo demonstrators

^{3.} Demonstrators...

Beyond light detectors: CROSS

ERC advanced grant CROSS (2018-2022)

Cryogenic Rare-event Observatory with Surface Sensitivity

CROSS develops an innovative bolometric technology to search for 0v-DBD

- Core of the project (high risk / high gain)
 Background rejection through pulse shape discrimination
 - Surface sensitivity through superconductive AI film coating
 get rid of light detectors
- > Complete crystallization of available ¹⁰⁰Mo (10 kg) in Li_2MoO_4 elements \rightarrow cubic crystals for CUPID-Mo-LNGS (Phase II)
- Purchase / crystallize ¹³⁰Te (up to 10 kg) in TeO₂ elements
- Run demonstrator in a dedicated cryostat (LSC Spain)

Encouraging preliminary results

Above-ground tests (CSNSM) with 20x20x10 mm Li₂MoO₄ and TeO₂ crystals

Alphas impacting on the film side are clearly discriminated

Dilution refrigerator under construction to host CROSS demonstrator

Commissioning in Canfranc (Spain) in April 2019

$CUORE \rightarrow CUPID$

CUORE is an array of TeO₂ bolometers searching for $0\nu 2\beta$ decay of the isotope ¹³⁰Te and taking data in LNGS (Italy)

Three important messages from CUORE

- 1. A tonne-scale bolometric detector is technically feasable
- 2. Analysis of ~1000 individual bolometers is handable
- 3. An infrastructure to host a bolometric next-generation $0\nu\beta\beta$ experiment is already available

CUORE is not background free $\rightarrow \sim 50$ counts/y in the ROI, dominated by

surface alpha background

It is time to work on CUPID, the natural evolution of CUORE

CUPID (CUORE Upgrade with Particle ID) is a proposed 0v2β bolometric experiment exploiting the **CUORE infrastructure** and with a **background 100 times lower at the ROI**

Prospects for CUPID

CUPID CDR under writing (working meeting in LNGS, Nov 19-20)

CUPID kick-off meeting is being planned in mid 2019

Rejection of α background in TeO₂

Reject α 's by detecting the feeble **Cherenkov light** emitted by β 's $\rightarrow \alpha$'s are below the Cherenkov threshold

Very difficult: light carries an energy amount 30 times smaller than for Li₂MoO₄

Vibrant R&D on ultra-sensitive low-temperature light detectors Best results achieved so far in France (CSNSM) with a CUORE-size crystal

¹⁰⁰Mo or ¹³⁰Te ?

Background Model Contamination Levels (Very Preliminary!)

Possible configurations in CUPID (¹⁰⁰Mo)

	Single element elemen		Isotope m	nass [kg]	Number of ¹⁰⁰ Mo nuclei				
	50×50×50 mm – 380	g 1150	~250		~1.4×10 ²⁷				
	45×45×45 mm – 280	g 1600							
	Same size as in CUORE Already achieved size in the R&D								
	Background [counts/(keV kg y)]	Number of BKG counts [5 keV, 10 y]	Count limit Feldman Cousins [90% c.l.]	Half life lin [y] [90% c.l.]	nit Μ _{ββ} [meV]				
	1 × 10 ⁻⁴	2.2	4.1	$1.8 imes 10^{27}$	⁷ 6.6 – 19				
Ne En Cry	Next generation experiment \rightarrow cover completely the inverted ordering region Enrichment cost: ~ 20 M \in Crystallization cost: ~ 5 M \in Bottle neck – 40 kg/y \rightarrow Phased approach								
4. CUF	PID				20				

CUPID reach

4. CUPID...

Demonstrators towards full CUPID

CUPID CDR

The CUPID-Mo collaboration

Major extension with respect to LUMINEU

Strong interest in China

Large CUPID group. Project for a "parallel CUPID" at JinPing laboratory

5. Collaboration...

CUPID-Mo organizational structure

The collaboration comprises 85 members. (~ 30% from IN2P3)
French component: 38 members from 4 sites: CSNSM, LAL, IPNL, CEA) (France-38, Italy-15, US-10, China-4, Germany-4, Russia-10, Ukraine-4) Collaboration agreement signed by the Pl's in January 2018
5. Collaboration...

Personnel in IN2P3 laboratories

2019 FTE's (estimation)

	CSNSM		IPNL		LAL	
	Name	FTE	Name	FTE	Name	FTE
	A. Giuliani	0.6	J. Gascon	0.15		
Researchers	S. Marnieros	0.25	C. Augier	0.2		
and	P. de Marcillac	0.8	V. Sanglard	0.1		
Professors	C. Marrache	0.2	A. Cazes	0.1		
	L. Dumoulin	0.2	J. Billard	0.1		
Research	E. Olivieri	0.5			P. Loaiza	0.5
Engineers	C. Oriol	0.2				
Technical	L. Bergé	0.3			Ch. Bourgeois	0.05
Engineers	T. Redon	0.5			M. Brière	0.4
and					E. Guerard	0.1
Technicians					B. Leluan	0.1
Doct docc	D. Poda	1.0				
Post-docs	A. Zolotarova	1.0				
TOTAL FTE	5.55		0.65		1.15	

5. Collaboration...

Main roles in France

CSNSM

- Data analysis of CUPID-Mo-LSM
- **Prototypes for CUPID-Mo-LNGS and CROSS**, advanced Neganov-Luke light detectors
- Assembly of CUPID-Mo-LNGS (with INFN), CROSS demonstrator and CUPID-Te
- **Commissioning of the CROSS cryostat** (with LAL, Canfranc)
- Installation and commissioning of the three future demonstrators
- Data analysis of sample channels of all the demonstrators

LAL

N2P3

- **Radiopurity assessment** of the materials
- **Mechanics** for the the three future demonstrators
- Assembly of the CROSS and CUPID-Te demonstrators in collaboration with CSNSM
- **Background model** in collaboration with Italian and US institutions

IPNL

- Data taking in the LSM-based demonstrators
- Data analysis for pulse shape discrimination

CEA

- Technical coordination of the underground operation
- **Electronics and DAQ in LSM**
- In prospect slow control and perhaps DAQ for CROSS

Grenoble (SIMaP, Cristallinov)

Radiopure Li₂MoO₄ crystal growth
 5. Collaboration...

Reinforce the Orsay group :

a permanent position to provide a **combined expertise** on (scintillating) bolometer conception, radiopurity and data analysis / simulation

Budget

The budget to operate CUPID-Mo-LSM and to build and operate CUPID-Mo-LNGS and CUPID-Te **is not secured**.

CROSS (**budget 3.2 M€**) can contribute only marginally (it has its own program)

Cost item	Cost (k€)	Comments			
Modane running costs	27	Total: 14 k€/month →84 k€ for six months Reasonable expectations: EDELWEISS will cover half of this cost and CUPID-Mo-LSM foreign collaborators will contribute with 15 k€ 84/2-15 = 27			
Missions to Modane	5	5 person.weeks for measurement maintenance			
Missions to LNGS	10	10 person.weeks for CUPID-Mo-LNGS assembly / commissioning			
Mechanics for demonstrators	15	Tools and sub-commissioning			
Material for holders	10	Ultrapure copper and PTFE			
Advanced light detector construction	10	Ge wafer and clean-room miscellaneous items			
TOTAL	77				

Request to CEA/IRFU: 30 k€ for year 2019 (~same amount received in 2018)

 \rightarrow This covers less than half of the expected 2019 costs \rightarrow 50 k \in missing

5. Collaboration...

Final considerations

