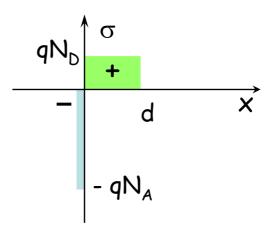

Technologie des détecteurs

Quelques détecteurs silicium et germanium



Le détecteur est une jonction abrupte P+N

d : épaisseur de la jonction -> détecteur

$$x_p = 0$$

 $x_n = d$

- déplétion partielle
- déplétion complète (Fcrit)
- surdéplétion (Fmin, Fmax)

Les expressions simplifiées

$$x_p = 0$$
 $x_n = d$

$$V_{0} = \frac{qN_{D}}{2\epsilon} d^{2}$$

$$d = \sqrt{\frac{2\epsilon}{qN_{D}}} V_{0}$$

$$F_{crit} = \frac{qN_{D}}{\epsilon} d = \frac{2V_{0}}{d}$$

$$F_{min} = \frac{V - V_{0}}{d}$$

$$F_{max} = \frac{V + V_{0}}{d}$$

$$C = \frac{\epsilon}{d} \times S$$

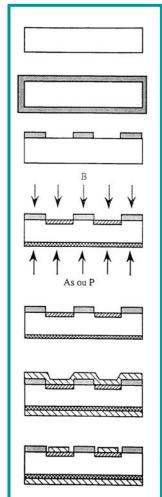
pour le silicium

$$V_0(v) \sim 4 \frac{d^2(\mu m)}{\rho(\Omega.cm)}$$

$$d \sim \frac{1}{2} \sqrt{\rho \cdot V_0}$$

$$F_{\text{max}}(V/cm) \sim 4.10^4 \sqrt{\frac{V_0}{\rho}}$$

$$C(pF / mm^2) = \frac{106}{d}$$


Les détecteurs silicium

-> surtout pour les particules chargées

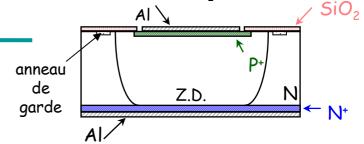
-> parfois pour des photons

Le détecteur passivé et implanté

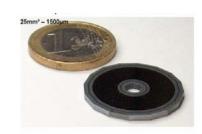
- Wafer de Si type N de haute résistivité (> 1000Ω .cm)
- Oxydation à ~1000°C (200 nm)
- Gravure de l'oxyde
 - Dépôt de résine
 - Masque
 - Insolation
 - Etching
- → Implantation (~50nm)
 - ⇒ Bore (15 keV 5.10^{14} cm⁻²) -> P⁺ -> jonction
 - ▶ Phosphore (30 keV- 2.10^{15} cm⁻²) ou As (30 à 170 keV ~ 10^{16} cm⁻²) -> N⁺ -> ohmique
- Recuit sous N_2 (800 à 900°C)
- Évaporation d'aluminium (~100 nm)

<u>Éventuellement</u>:

- Gravure de l'Al
- passivation

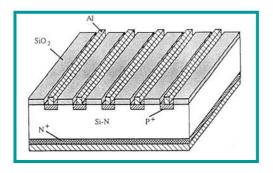


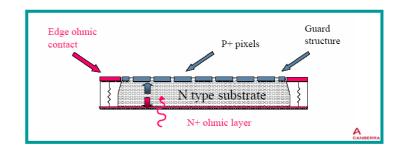
Détection des ions légers et lourds


Le détecteur passivé et implanté

- Structure générale :
 - Fenêtre d'entrée : Si(P+) + aluminium (jonction)
 - Fenêtre de sortie : Si(N⁺)+ aluminium (contact ohmique)
 - Structure de garde (1 à plusieurs anneaux de garde) qui limite les injections de courant provenant des bords
 - Passivation sur les zones non actives

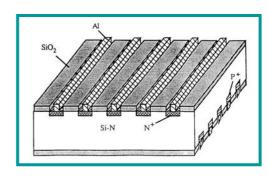
- Procédés industriels
- Wafers de 4, 5 et 6 pouces
- Épaisseurs de 30 à 2000 μ m (suivant les constructeurs)





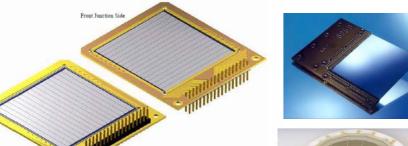
Le détecteur segmenté simple et double face

simple face


- · localisation à une dimension
- · les pistes ont leur propre électronique de lecture
- · les pistes sont isolées par des interpistes passivées (SiO2)

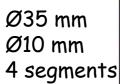
double face

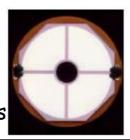
- · localisation à deux dimensions
- · les pistes N⁺ sont isolées par des pistes P⁺
- · augmentation des voies de lecture

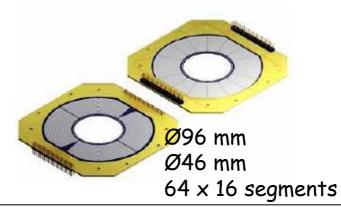


Le détecteur segmenté simple et double face

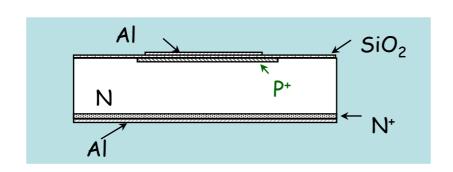
- · Géométries variées qui se traduisent par la réalisation de masques assez coûteux
- Les dimensions des « segments » sont assez larges (> 500 μ m)
- Compromis entre les voies de lecture et les résolutions spatiales nécessaires

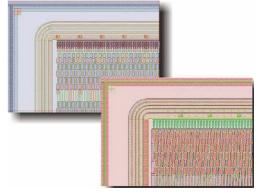

 $60x60 \text{ mm}^2$ 300 μ m (60x60 pistes)




50x50 mm² 300 *µ*m (16 x 16 pistes)

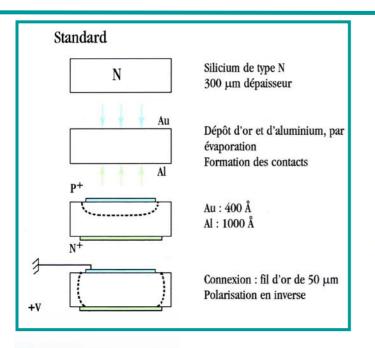
16 segments/ dia 20mm/ 1500µm



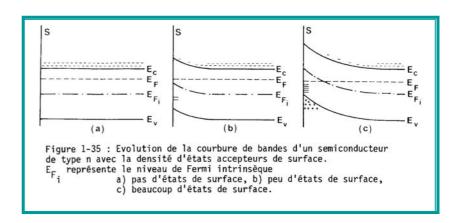

60×40 mm² 100 μm

et en physique des particules!

 Permet de la matière à la surface du détecteur, et la connectique sur les surfaces (capacité et résistance directement sur la surface du détecteur)



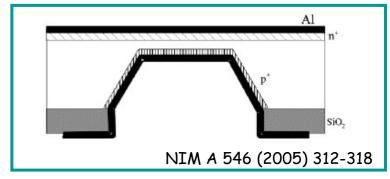
 Mais cela constitue une zone morte pour les particules chargées en physique nucléaire


Ex: $1 \mu m$ de SiO_2 Un proton de 5 MeV perd ~10 keV Un alpha de 5.5 MeV perd ~100 keV

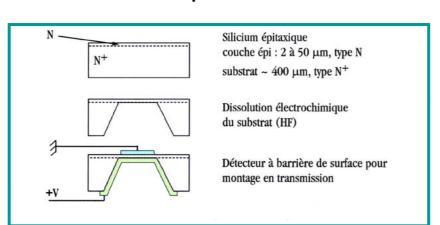
Le détecteur à barrière de surface

- · La jonction se fait par un contact métallique (barrière Shottky): Au-Si
- Les états de surface sont alors de type

· Le contact arrière Al-Si est de type N⁺



Procédés encore utilisés en laboratoire, détection des ions lourds

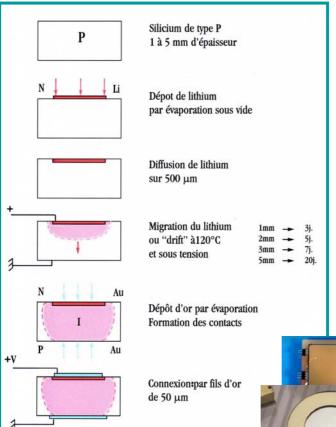


Le détecteur aminci

- L'amincissement se fait par
 - Abrasion mécanique : long et coûteux
 - Dissolution anisotrope:
 - TMAH 80°C- 14h
 - · <100>

- Électrolyse du silicium épitaxié:
 - dissolution sélective du substrat de type N⁺ par rapport à la couche épitaxiée N (liée à la concentration en trous)

~7h - HF 5%



Détection des ions lourds

Le détecteur compensé au lithium

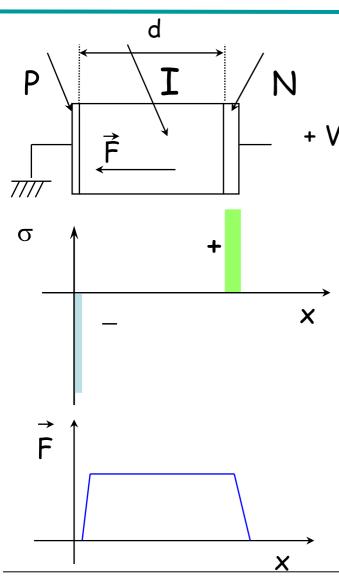
 Réalisation d'une zone quasi intrinsèque : zone I, de grande épaisseur (1 à 10 mm) -> type PIN

Techniquement:

- Si de type P (dopants -> Bore)
- Diffusion de Li⁺, petit et donneur : réserve de Li, dopage N⁺ d'où formation d'une jonction NP, que l'on polarise en inverse.
- Migration de Li⁺ à 120°C: neutralisation de Bpar Li⁺, la zone tend à devenir neutre, le Li⁺ en position interstitielle

Dépôt d'or :

- face avant : zone P*
- face arrière (réserve de Li, zone N⁺): contact ohmique.

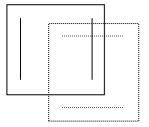

Le détecteur Si(Li) segmenté

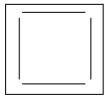
Production steps for position-sensitive semiconductor detectors in IKP doping of contacts Al-evaporation monocrystal chemically polished 32×32 pistes 10 mm, 64 x 64 mm² illumination through a photomask photoresist and developing removing of the Al-layer plasma-etching through removing of the the implanted contact photoresist ultrasonic bonding 8 pads Forschungszentrum Jülich

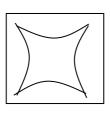
 $5 \text{ mm}, 55 \times 100 \text{ mm}^2$

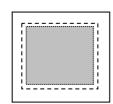
Le détecteur Si(Li)

- Pas de charge d'espace dans la zone I, donc champ constant :F = V/d
- Condensateur plan $C = \varepsilon S/d$
- détection des ions (température ambiante)
- détection des électrons et des X (77K)


Le détecteur à surface(s) résistive(s)


(PSD: position sensitive detector)


- · les couches résistives sont réalisées par implantation (jonction et ohmique)
- · les électrodes sont évaporées sur les surfaces résistives
- · la division résistive des charges : le signal sur chaque électrode est proportionnel à la distance entre l'interaction et l'électrode, barycentrage des signaux



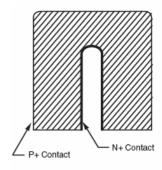
localisation des ions

- · 4 électrodes
- Un signal sur chaque électrode
- Une combinaison des signaux pour donner la position

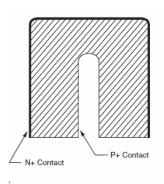
Duo-latéral tétralatéral pin cushion ligne résistive

Quelques détecteurs silicium

Type de détecteurs	Géométrie	Résolution en énergie	Raie de calibration	Spécificité
Passivé et implanté	50 mm ² 300 μm	11 keV	5.486 MeV (²⁴¹ Am)	Particules chargées
Barrière de surface	50 mm ² 300 μm	15 keV	5.486 MeV	Particules chargées
Si(Li)	300 mm ² 5 mm	< 50 keV < 20 keV	5.486 MeV 975 keV (²⁰⁸ Bi)	Particules chargées
Si(Li) refroidi	25 mm ² 5 mm	150 eV	5.9 keV (⁵⁵ Fe)	X de 1 à 30 keV


Les détecteurs germanium

pour la détection γ

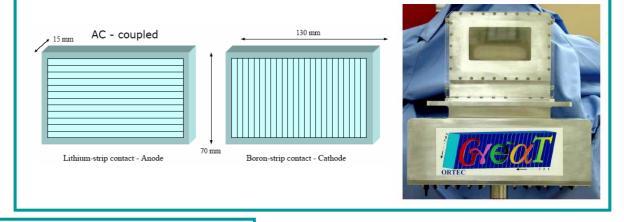


Le détecteur germanium

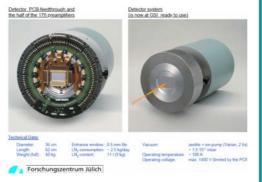
- Géométrie planaire ou coaxiale pour augmenter les volumes de détection
- cristaux de gros volume et de haute pure té (HPGe) : exemple : 110mm de long, 98 mm de diametre, 800 cm 3 , 4.4 kg, $|NA-ND| \sim 10^9$ cm $^{-3}$
- type P (mais se dégradent plus en présence de neutrons) ou type N
- contact P^+ : implantation de bore (dépôt mince : 0.3 μ m)
- contact N^+ : diffusion de lithium (couche épaisse : > 500 μ m)

Ge type N

Ge type P


La géométrie planaire

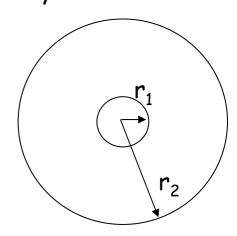
· Même structure, mêmes équations que le silicium


Éventuellement segmenté :

pistes

pixels (pads)

La géométrie cylindrique

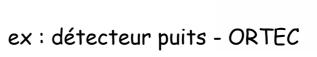

- · On considère un cristal cylindrique coaxial
- · On effectue le changement de coordonnées -> cylindriques
- · On calcule les mêmes paramètres : tension de déplétion, champ radial, capacité....

$$V_{0} = \frac{q|N_{A} - N_{D}|}{2\varepsilon} \left[r_{1}^{2} \ln(\frac{r_{2}}{r_{1}}) - \frac{1}{2} (r_{2}^{2} - r_{1}^{2}) \right]$$

$$F(r) = \frac{qN_A}{2\epsilon}r + \frac{V - \frac{qN_A}{4\epsilon}(r_2^2 - r_1^2)}{r \ln(\frac{r_2}{r_1})}$$

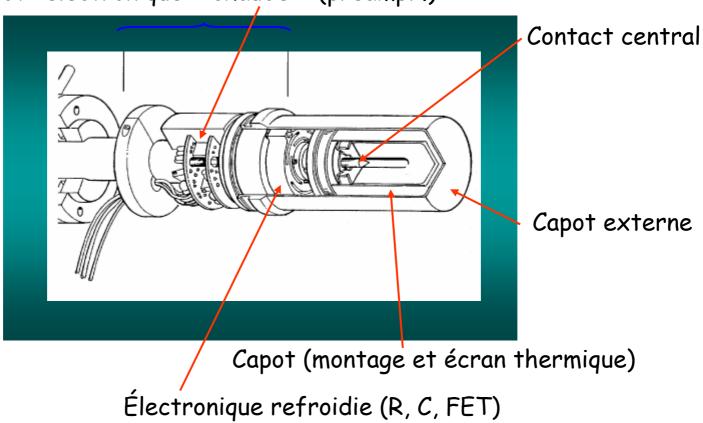
$$C = \frac{2 \pi \varepsilon}{\ln \frac{r_2}{r_1}}$$

 r_1 : rayon intérieur r_2 : rayon extérieur



Le fonctionnement

- Particularité : il fonctionne à basse température <90K : azote liquide en général
- · À température ambiante, la génération thermique est trop importante, le courant est élevé et le bruit statistique est trop fort.
- · Nécessité d'avoir un cryostat, le cristal est sous vide
- · Introduction de matière dans le parcours de la particule


Détection des X et des gammas

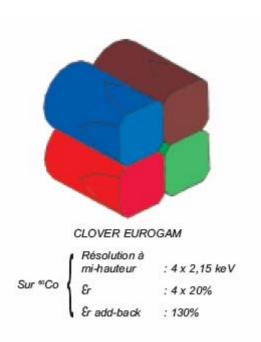
Le principe

Capot+ électronique « chaude » (préampli.)

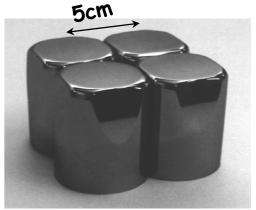
ORTEC

et en images

Détecteur : 50 mm de long et 50 mm de diamètre

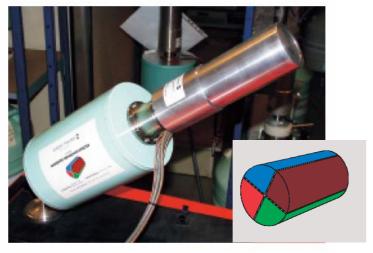

Les différents types de détecteurs

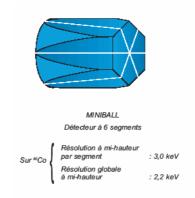
- 1 seul cristal
 - · Adapter les volumes aux énergies attendues
 - · Améliorer les résolutions
- · plusieurs cristaux regroupés dans un même cryostat :
 - · Augmenter la granularité
 - · Améliorer les résolutions
 - · Corriger les effets Doppler
- · cristaux segmentés
 - · Localiser les interactions
 - · Reconstituer les trajectoires

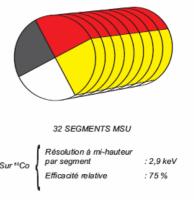

Les clovers ou « trèfles »

Les détecteurs sont regroupés dans le même cryostat

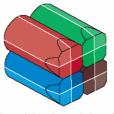
- diamètre 50 mm, longueur70 mm (type EUROGAM)
- · diamètre 50 mm, longueur80 mm
- diamètre 60 mm, longueur90 mm (type EXOGAM)
- diamètre 70 mm, longueur140 mm (type VEGA).






Les coaxiaux segmentés

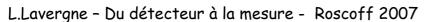
Pour la localisation des interactions



SUPER CLOVER QUADRUPLE SEGMENTS Ensemble de 4 détecteurs de longueur 140 mm

Résolution alobale : 2.3 keV à 1.33 MeV

Résolution à mi-hauteur : 3.5 keV à 1,33 MeV des 9 segments


Résolution globale

à mi-hauteur : 2,6 keV à 1,33 MeV

: 3.2 keV à 1,33 MeV

Les détecteurs encapsulés

Le détecteur est mis sous vide dans une capsule puis connecté à son électronique froide avant d'être intégré dans son cryostat

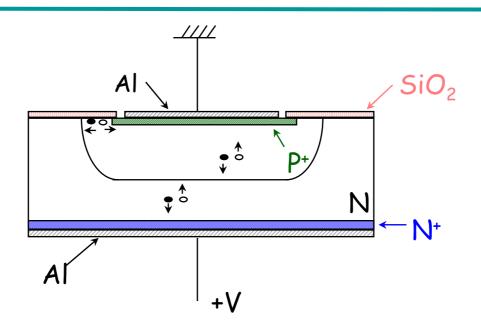
Grappe CLUSTER pour EUROBALL (7 détecteurs GeHP encapsulés)

Section hexagonale - diam. 70 mm - haut. 78 mm Résolution FWHM : ≤ 2,3 keV Efficacité : ≥ 55%

Epaisseur de paroi : 0,7 mm Distance Germanium - capsule : 0,7 mm.

Quelques détecteurs germanium

Type de détecteurs	Géométrie	Résolution en énergie	Raie de calibration	Spécificité
HPGe Type N	10 à 100% (+ fenêtre Be)	1.80 à 2.65 keV	1.332 MeV (⁶⁰ Co)	γ de 3 keV à 10 MeV + neutrons
HPGe Type P	10 à 150%	1.80 à 2.40 keV	1.332 MeV	γ de 80 keV à 3 MeV
HPGe planaire	Épaisseur -> 25 mm	1.3 keV	662 keV (¹³⁷ Cs)	γ < 100 keV
Segmentés	Cluster (6 seg.) Clover (4 seg.) AGATA (36 seg.)	3 keV/segment 2 keV/segment 2 keV/segment	1.332 MeV	Tracking ightharpoonup effet Doppler



Les caractéristiques électriques en géométrie planaire

- · Le courant
- · La capacité

Le courant

- 3 contributions au courant du détecteur :
- · courant de génération dans la zone désertée, dépend de V et de la durée de vie des porteurs minoritaires
- · courant de diffusion dans la zone neutre, dépend du dopage
- · courant de surface, dépend des procédés de fabrication

Le courant

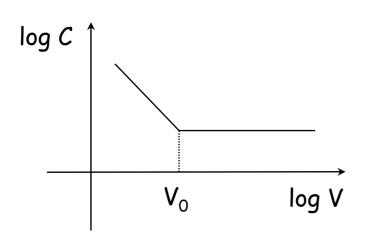
- Il se mesure : i=f(V)
- · La caractéristique permet d'évaluer la stabilité et les risques de dégradations.

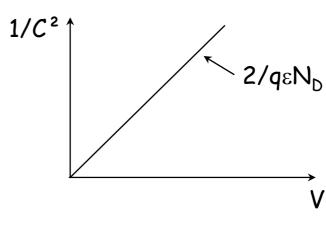
Pour les Si planar : de 10 nA/cm²

Pour le Si BdS: de 100 nA/cm²

Pour le Si(Li): de $1 \mu A/cm^2$ (non refroidi)

Pour le Ge : ~ pA/cm²


La capacité


• Se calcule :
$$C = \frac{\varepsilon}{d} \times S$$

· Se mesure et permet de déterminer :

la tension de déplétion : C = f(V)

le profil d'impuretés
$$N_D$$
: $\frac{1}{C^2} = \frac{2}{qN_D\epsilon} V$

Technologie

FIN

