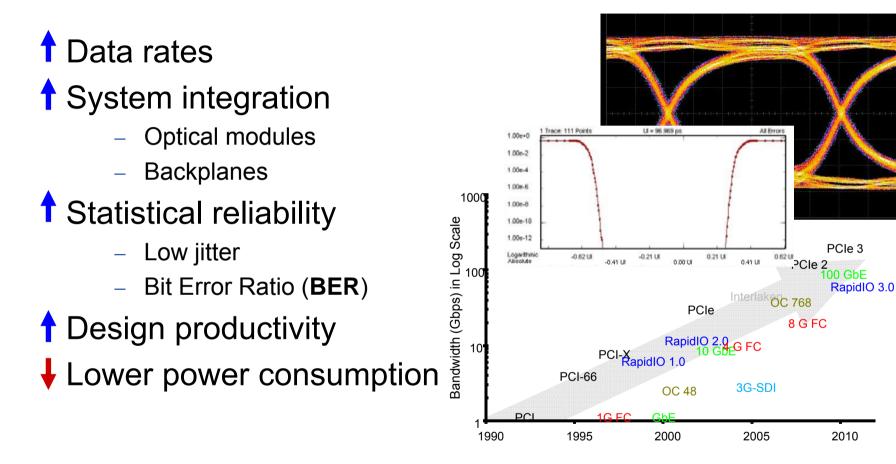
# **XCVR Design Training**

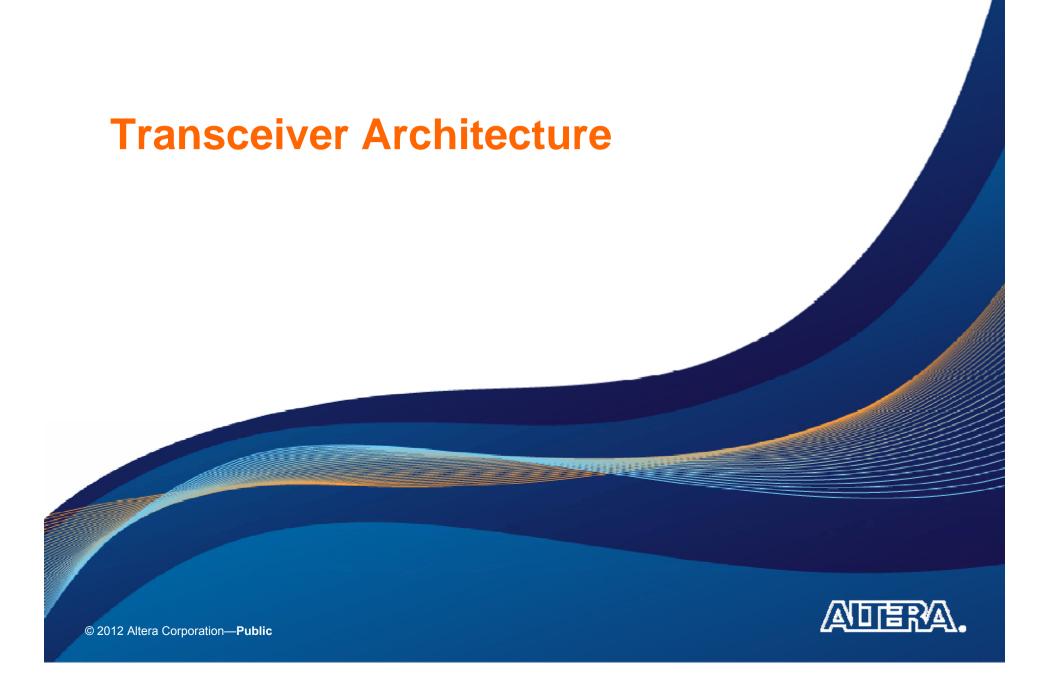
Peter Schepers High Speed Specialist November 2012




© 2012 Altera Corporation—Public

# Agenda

- Transceiver Architecture
- Clock Recovery and Jitter Tracking
- Transmitter PLL
- Transceiver Design
- Transceiver Reconfiguration
- Demo Design Using Reconfiguration
- Signal Conditioning and Best Practices for Link Training
- Signal Integrity Simulation (with Demo)
- Transceiver Toolkit (with Demo)

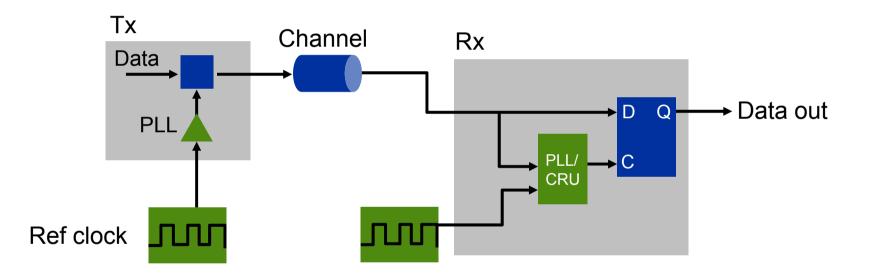



# **Transceiver Design Trends & Challenges**



### Altera's innovation address the challenges of next generation transceiver design

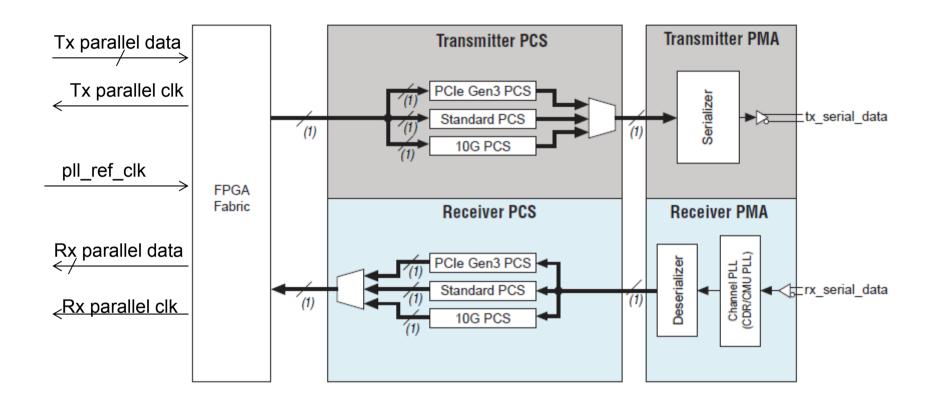





# What is a Transceiver?

- Combination transmitter/receiver used when sending high-speed digital data/control signals across physical medium
  - Board traces
  - Backplane
  - Optical fiber
  - CAT5 cable
- Used in the PHY (physical) layer of the OSI model
- Made up of the physical coding sub-layer and physical medium attachment




# **Serial Communication**



Ref clock



# What are transceivers



transmit and receive parallel data on a serial link



© 2012 Altera Corporation Public

# **Definitions**

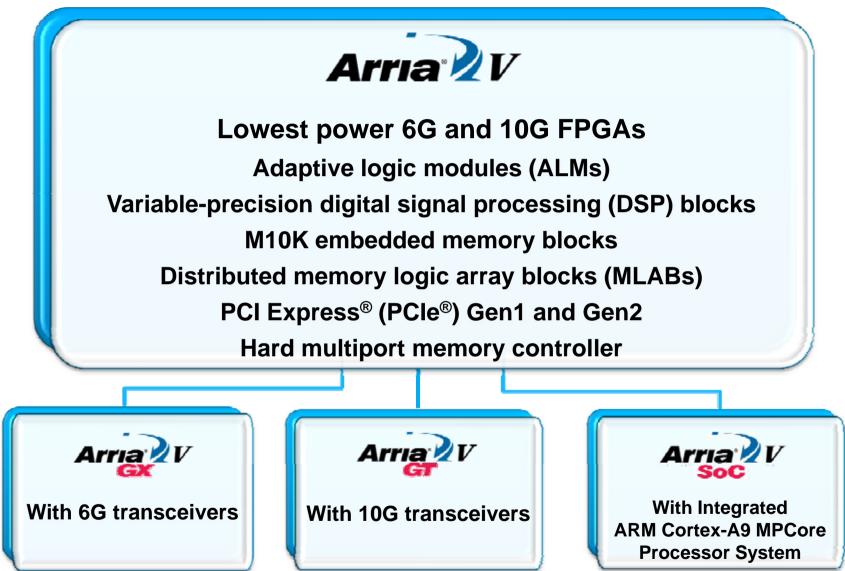
- Media Access Controller (MAC)
  - Assembles packets to be transmitted across link
  - Disassembles packets received from across link
  - Handles error and fault messages from link
- Physical Coding Sub-Layer (PCS)
  - Digital logic that prepares and formats data for transmission across a physical medium type or restores received data to original form
  - Detects link errors
  - Ex. Encoding, decoding, scrambling, descrambling
- Physical Medium Attachment (PMA)
  - Converts digital data to serial analog stream or reverse
  - Connects to physical medium
  - Ex. Parallel to serial conversion



# **28-nm Device Families**

- Cyclone V
- Arria V
- Stratix V




# **Cyclone V FPGA Family**

*Opening Up Design Possibilities* 

|                                                           | Lowest<br>cost and power                                                                                               | 3G transceivers                                                                                        | 5G transceivers                                                                         |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| atera.<br>Cyclone V                                       | Optimized for<br>lowest system<br>cost and power<br>for a wide<br>spectrum of<br>general logic and<br>DSP applications | Optimized for<br>lowest cost and<br>power for 614<br>Mbps to 3.125<br>Gbps transceiver<br>applications | FPGA industry's<br>lowest cost and<br>power for 5.0<br>Gbps transceiver<br>applications |
| FPGA                                                      | E Variant                                                                                                              | GX Variant                                                                                             | GT Variant                                                                              |
| Integrated<br>ARM Cortex-A9<br>MPCore Processor<br>System | SE Variant                                                                                                             | SX Variant                                                                                             | ST Variant                                                                              |



## **Arria V FPGAs**





©42012 Altera Corporation Public

# **Stratix V Device Family Variants**

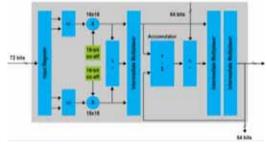
### Stratix V E variant

For highest density, high-performance applications

### Stratix V GS variant

 Optimized for high-performance, high-precision DSP applications with transceivers up to 14.1 Gbps

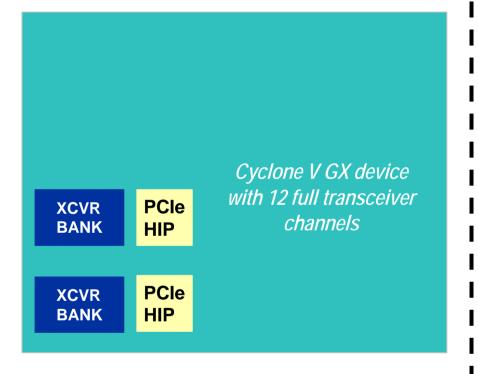
### Stratix V GX variant

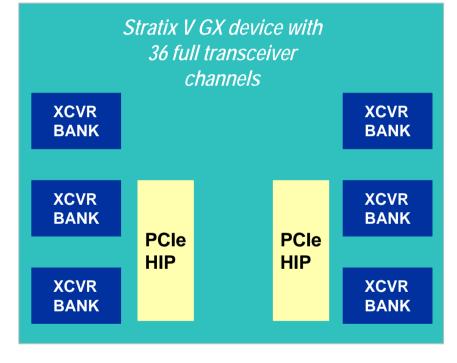

Up to 66 transceivers at 14.1 Gbps for high performance, high bandwidth

## Stratix V GT variant

 28 Gbps for high-performance, ultra-high bandwidth applications

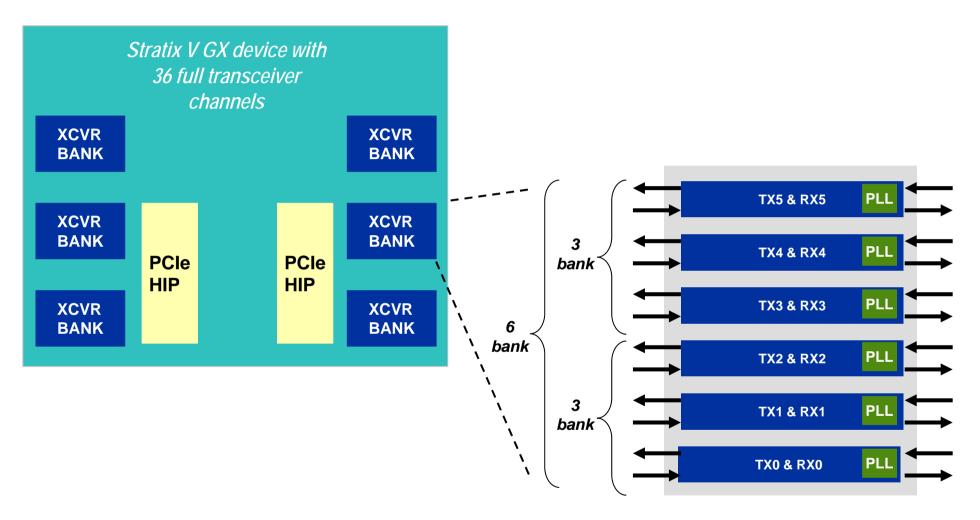



28-Gbps Transceivers



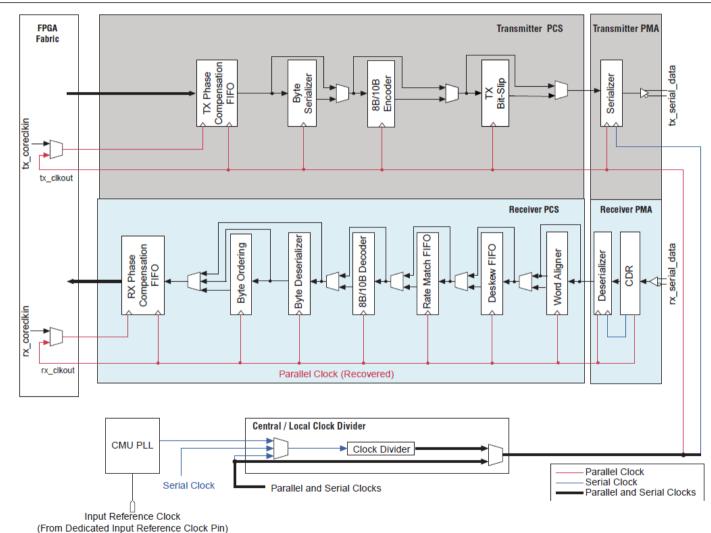

Variable-Precision DSP Block




# **Transceiver Locations**



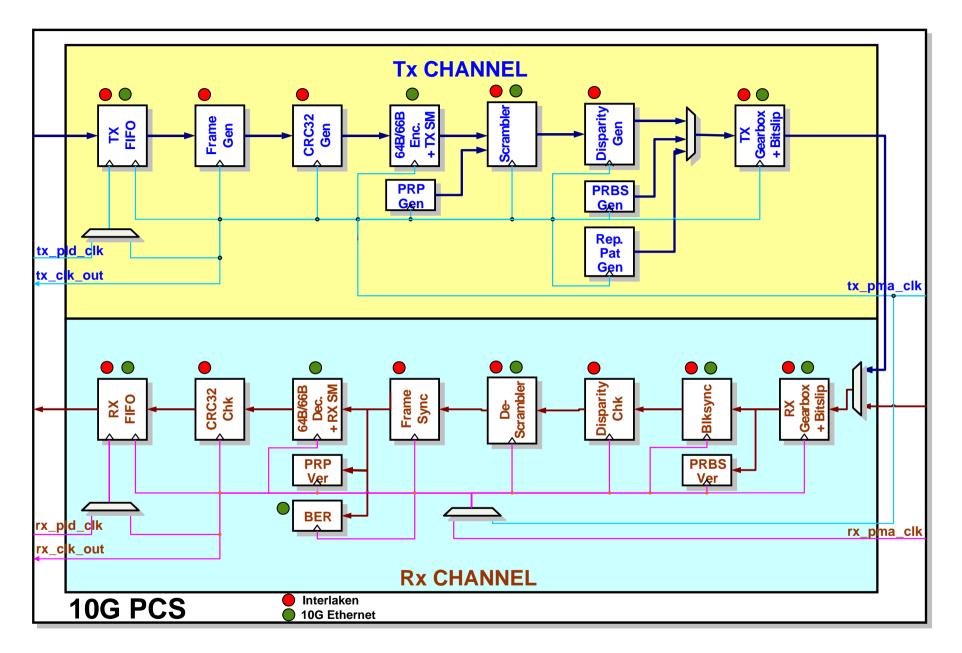





# **Transceiver Layout**



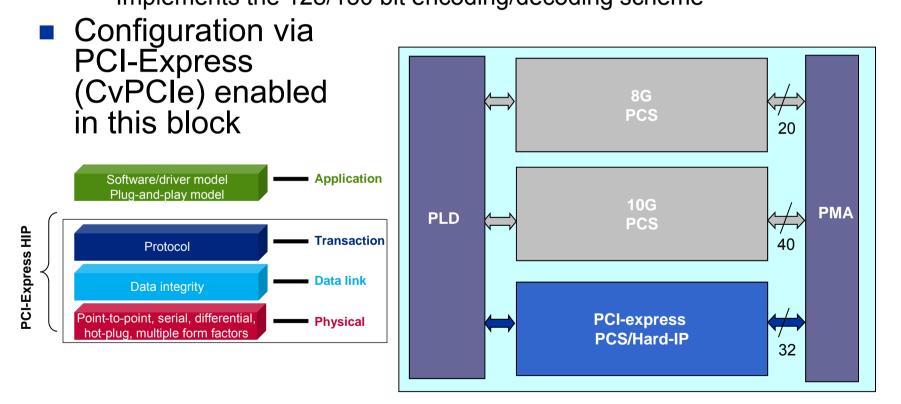



# **Standard PCS Datapath**



#### Figure 1–18. Standard PCS Datapath in Stratix V GX Channels

© 2012 Altera Corporation Public



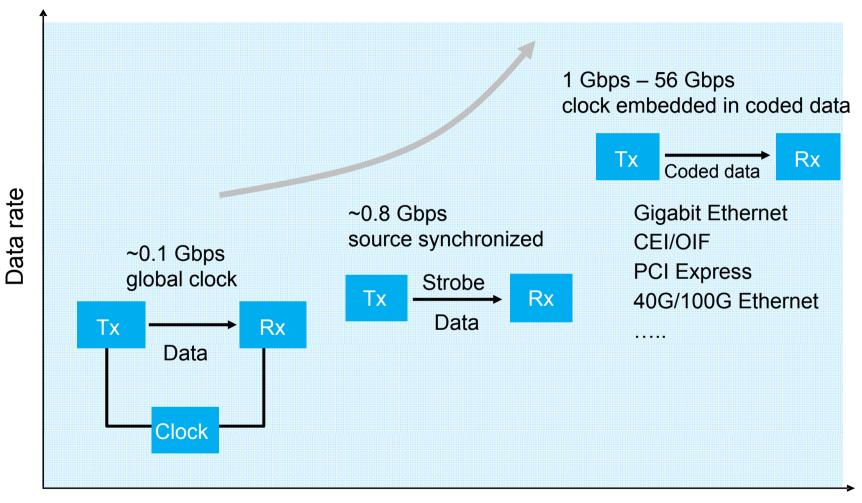





# **PCI-Express Hard-IP**

- Stratix V PCIe Gen 3/2/1 x8 HIP with 256 bit architecture
- New Stratix V PCIe Gen3 32-bit PCS used with HIP
   Implements the 128/130 bit encoding/decoding scheme

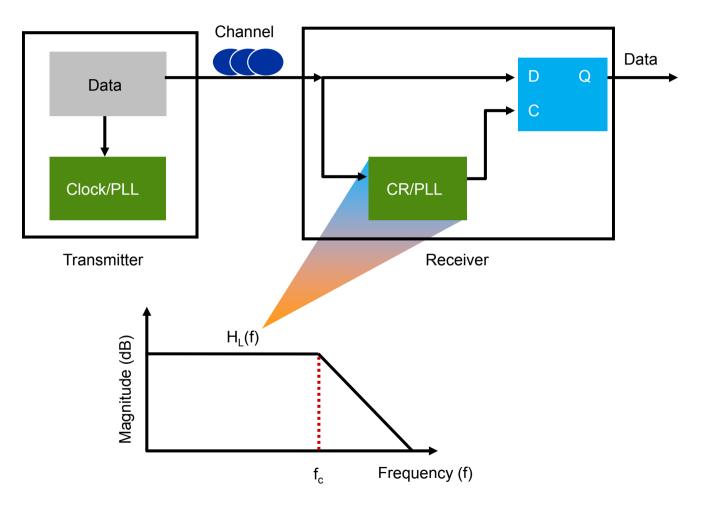






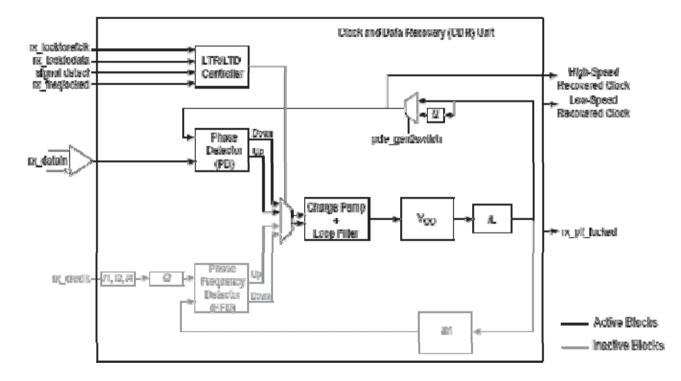



© 2012 Altera Corporation—Public


# HSIO Link Architecture Advancement Path



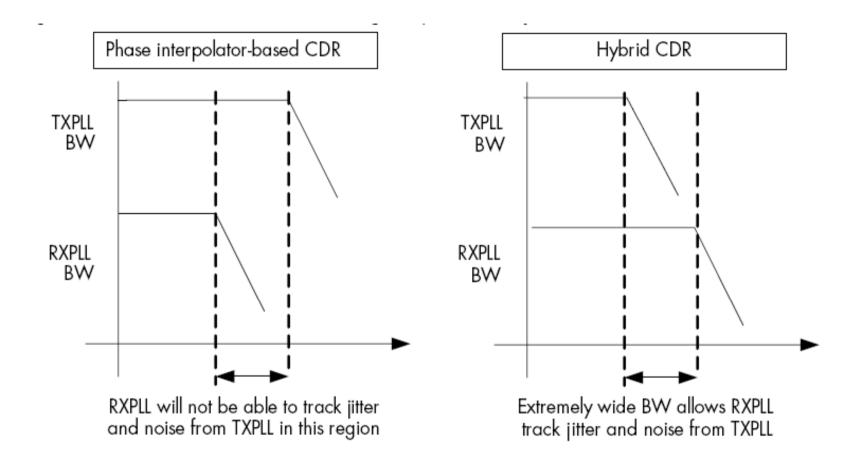
Time




# Serial Data Communication System Using a Transceiver



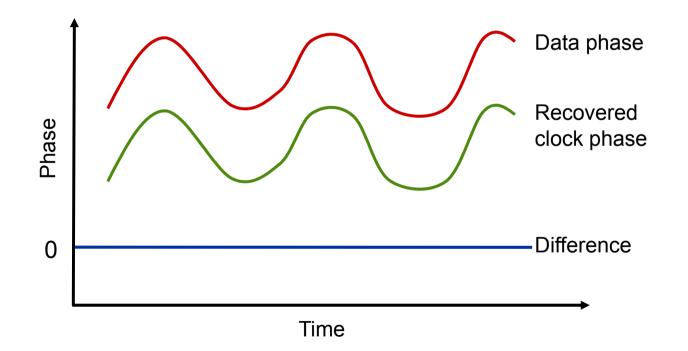



# **Clock and Data Recovery (CDR)**



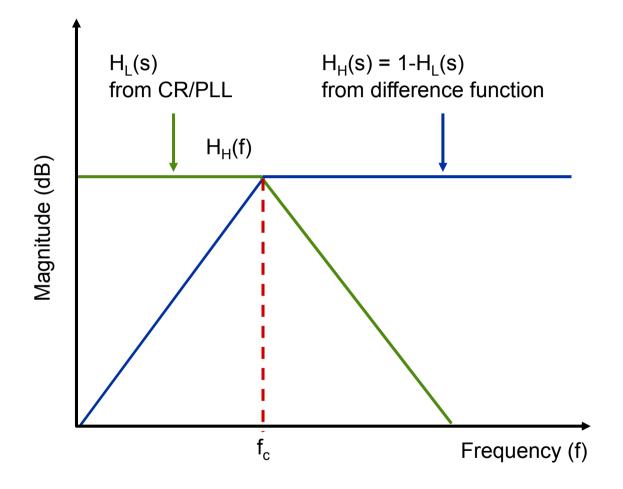
- CDR has lock-to-clock and lock-to-data modes
- CDR is first locked to the reference clock, then switched to lock the data, providing fast locking time
- No unlocked or out-of-lock problems when the received data has excessive jitter
- Reference clock jitter does not affect CDR jitter performance




# The importance of a high bandwidth

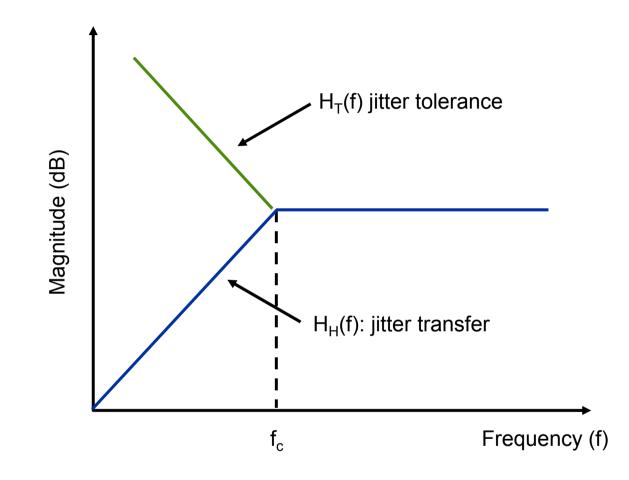





# **Jitter and Reference Clock**

- What matters in a link system is the relative jitter referenced to the recovered clock
- The net jitter is the phase difference between the data and the recovered clock



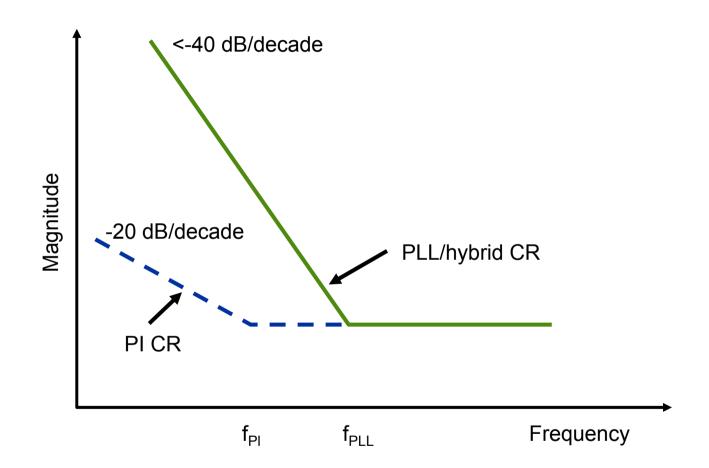



# **Jitter Transfer Function**





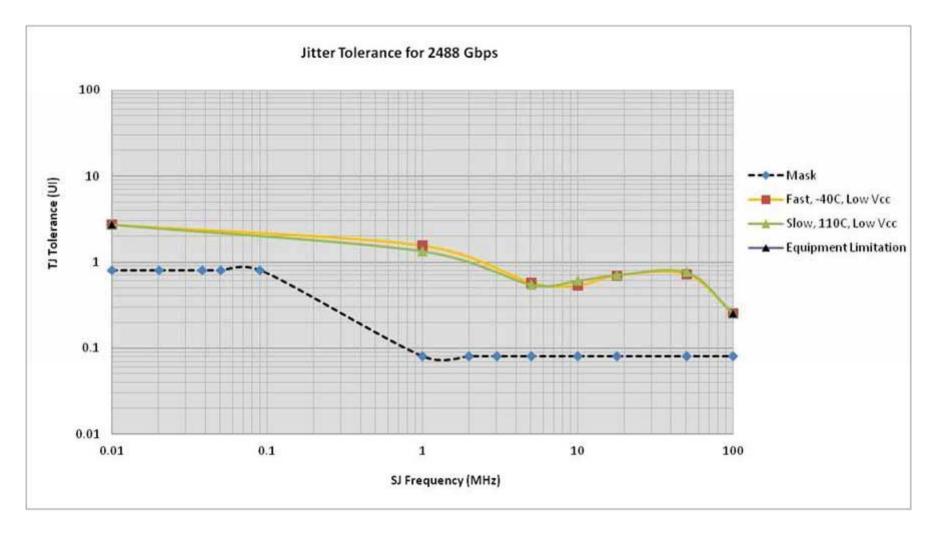
# **Jitter Tolerance Function**




■ Higher f<sub>c</sub>, better jitter tracking, better jitter tolerance



© 2012 Altera Corporation Public


# **Jitter Tolerance Comparison**



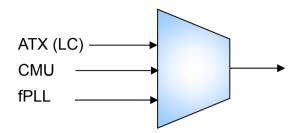
Receivers have a hybrid phase-locked loop (PLL)-based CDR technology that has the best jitter generation and jitter tolerance performance



# The proof !





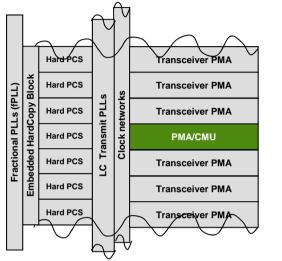

## **Transmitter PLL**



© 2012 Altera Corporation—Public

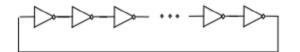
# **Transmit Clocking Options**

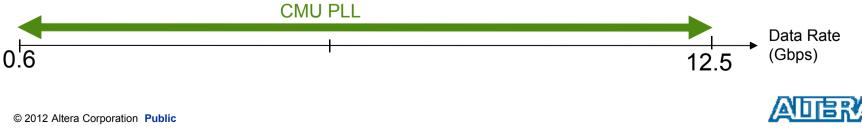
- Clocking options enabling independent data rates and flexible clock distribution network
- ATX PLL (LC)
  - Wider operating range enabled by different VCO modes
  - Sub-picoseconds of jitter for high statistical reliability
- Clock Management Unit (CMU)
  - Ring Oscillator for continuous operating range with best in class jitter
- fPLLs can be used for transceivers in addition to general device clocking




| Transmit PLL option      | Data Range<br>(Gbps) | Benefit                 |
|--------------------------|----------------------|-------------------------|
| ATX (LC) PLL             | 1 – 14.1             | Best jitter performance |
| CMU (Ring<br>Oscillator) | 0.6 – 12.5           | Best data-rate range    |
| fPLL                     | 0.6 – 3.75           | Additional PLL source   |

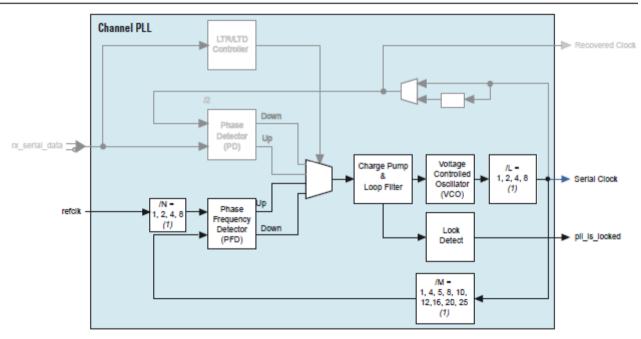
# Up to 44 independent 12.5Gbps channels on a single Stratix V FPGA





# **CMU PLL Operating Range**



- Each channel can be configured as data channel or as CMU (clock management for the transmit PLL)
- Similar CMU to Stratix IV Ring-oscillator
- Wide operating range with low transmit jitter


- 0.6Gbps – 12.5Gbps

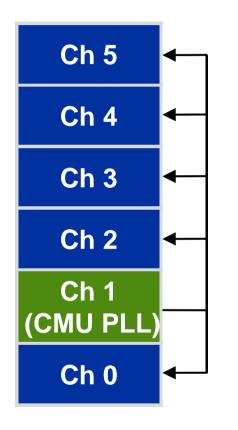




# **CMU PLL**

#### If you use Channel PLL as CMU PLL the RX is unavailable (no CDR)

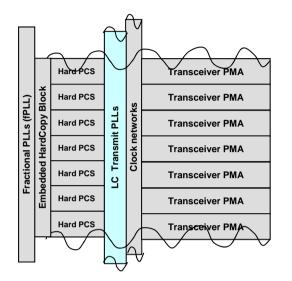



#### Figure 1-10. Channel PLL Configured as CMU PLL in Stratix V Devices

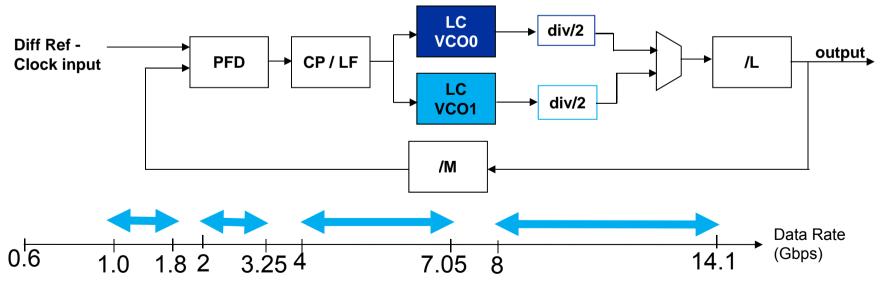
#### Note to Figure 1–10:

(1) Not all combinations of /N, /M, and/L values are valid. The Quartus II software automatically chooses the optimal values.



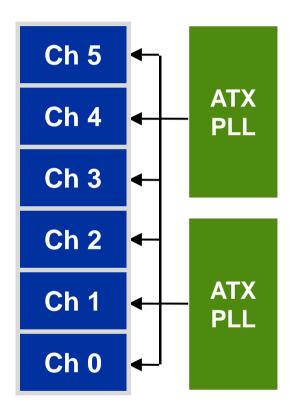

# **CMU PLLs**




- CMU PLLs in channels 1 and 4 in 6 transceiver bank can generate clocks for other transceiver channels within or outside transceiver bank
- CMU PLL channel may still be used as TX-only channel



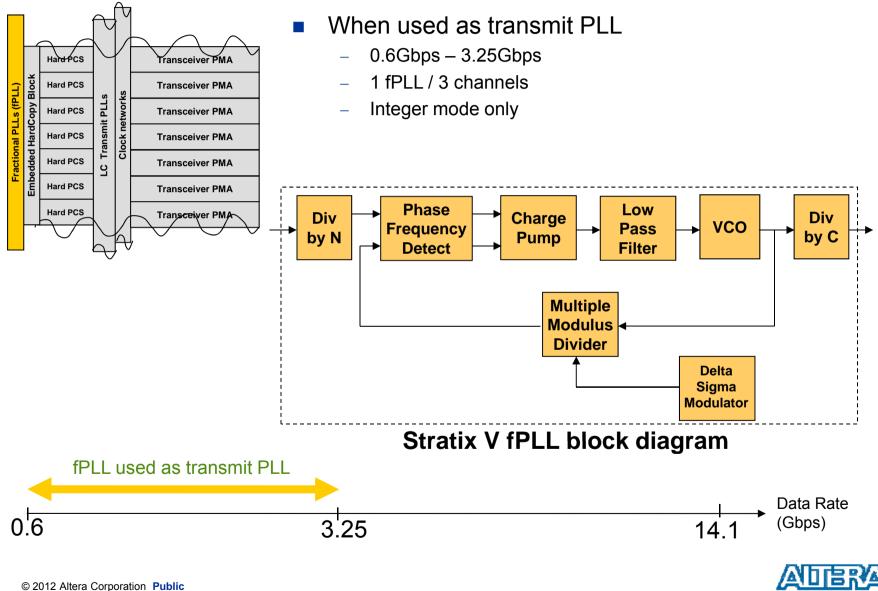
# **Programmable ATX PLL**



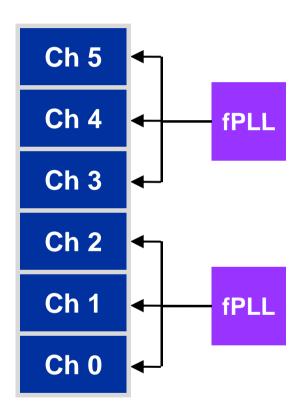

- 1 ATX PLL / 3 channels (triplet)
- Sub-picoseconds jitter achieved with LC PLL
- Programmable ATX (LC) PLL Range
  - 8 Gbps 14.1 Gbps
  - 4 Gbps 7.05 Gbps
  - 2 Gbps 3.525 Gbps
  - 1 Gbps 1.7625 Gbps (using local divider)






# **Stratix V ATX PLLs**

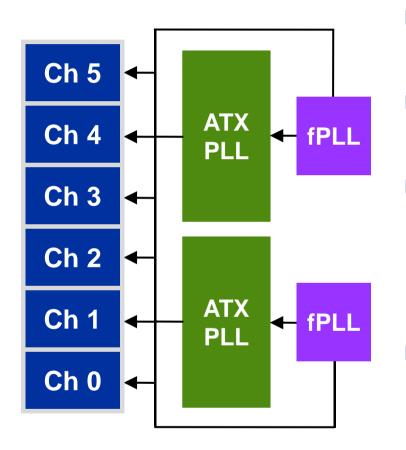



- Better jitter performance at higher data rates than CMU PLLs
- Limited frequency support
  - Must be tuned to support a target data range
- Two per 6-transceiver bank
- Allow full use of device transceiver channels
  - Channel PLL can be used as CDR PLL
- Stratix V GT (28G) channels must use ATX PLLs



# **Fractional PLL (fPLL)**




# **Fractional PLLs**



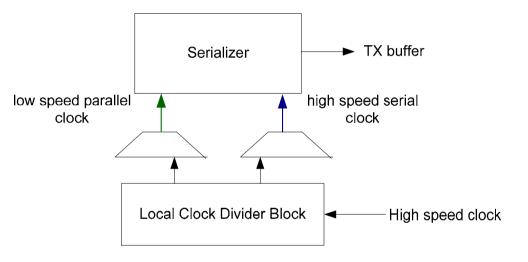
- Can serve directly as transmitter PLL
  - Data rate dependant
- Provide increased multiplication/division factors over CMU PLLs
- Allows full use of device transceiver channels
  - Channel PLL can be used as CDR PLL



## **Other use of Fractional PLLs**

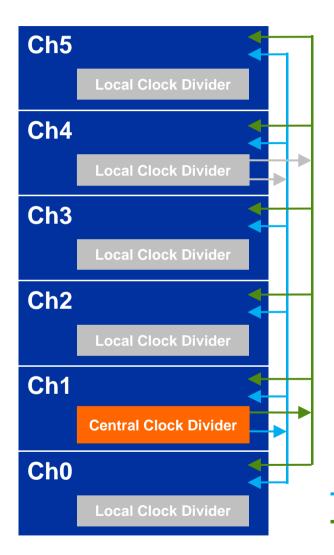


- Supported in Stratix V and Arria V
- Generate reference clock for channel/ATX PLLs
- Provide increased multiplication/division factors
  - Support using a reference clock frequency not directly supported by channel/ATX PLLs
- Drive reference clock lines that span the sides of FPGA
  - Can be segmented per transceiver bank



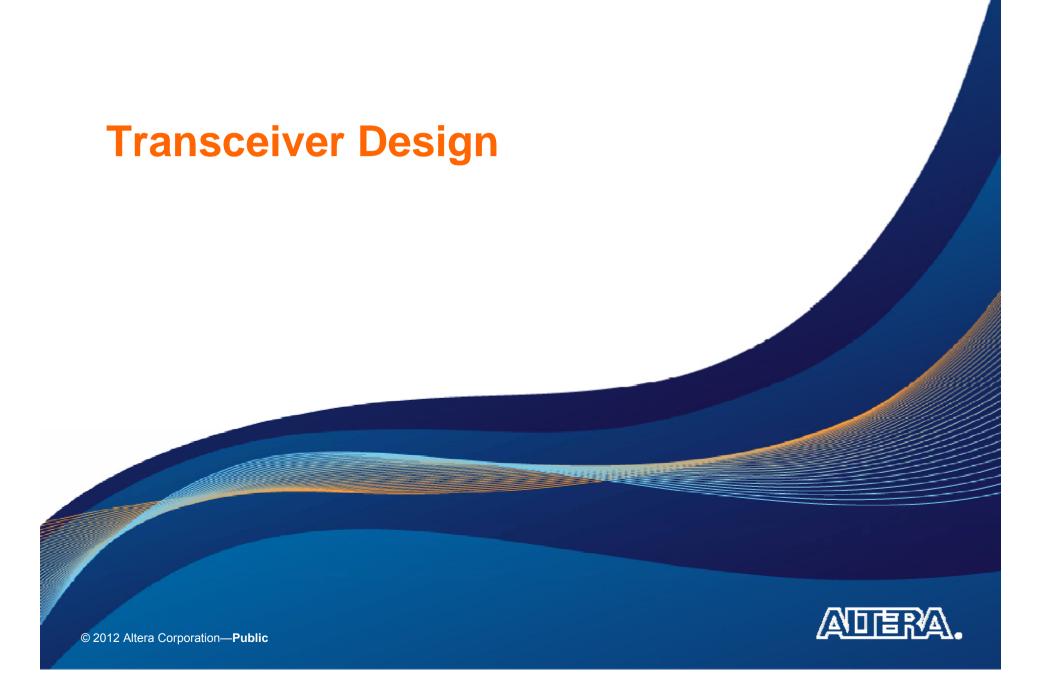

# **Transmitter Local Clock Dividers**

- One in each channel
- Receive high speed serial clocks from any transmitter PLL


#### Generates

- High-speed serial clock for local PMA
- Low-speed parallel clock for local PMA/PCS
- Active in non-bonded (x1) mode
  - Each channel divides highspeed clock to support its individual target data rate






# **Central Clock Dividers**



- Special functionality of local clock dividers in channels 1 and 4 of transceiver bank
- Each central clock divider can generate high-speed serial AND low-speed parallel clocks for *bonded* channels
- High-speed serial clockLow-speed parallel clock





### **Transceiver PHY IP Cores**

- Set of IP Cores that enable/configure the FPGAs PCS/PMA layers for high-speed designs
- Both protocol-specific and generic cores available
- Implementation
  - Embedded transceivers
  - Core logic
  - Both



## **Protocol-Specific PHY IP Cores**

- 10GBASE-R
- 10GBASE-KR
- XAUI
- Interlaken
- PHY IP core for PCI Express
- Hard IP for PCI Express

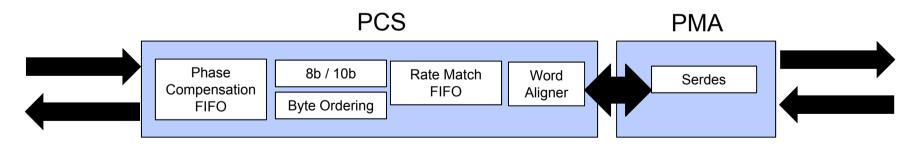
...



### **Non-Protocol-Specific PHY IP Cores**

- Custom
- Low Latency
- Deterministic
- Native PHY




# **Custom PHY IP**

#### Overview

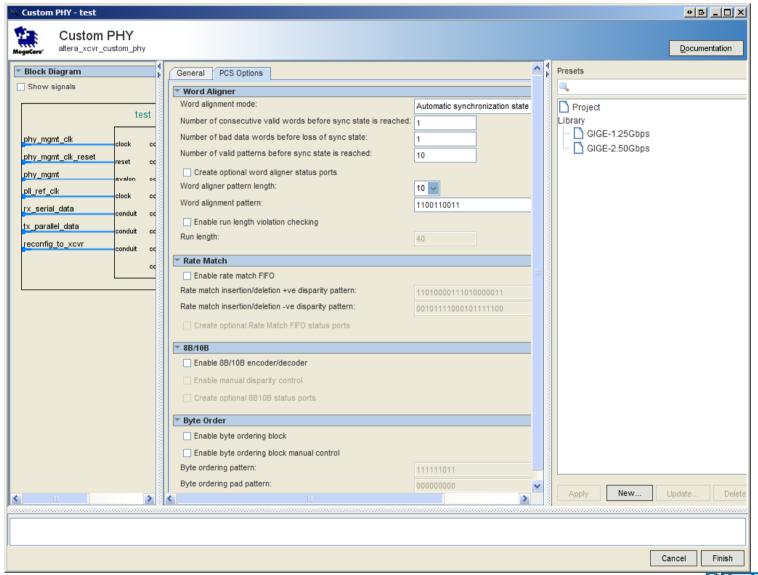
- Provides all PCS blocks
- Available only for the Standard PCS
- Alway includes Phase Compensation Fifo

#### Generic PHY for supporting custom interfaces

- Proprietary protocol
- No protocol-specific PHY IP available



Excellent for custom / proprietary protocols!




# **Custom PHY IP Parameter Editor (1)**

| Eustem PHY<br>altera_xcvr_custom_phy         Block Diagram         Show signals         Image: state sta | Ceneral       PCS Options         Options       Presets         Device family:       Cyclone V         Parameter validation rules:       Custom         Mode of operation:       Duplex         Number of lanes:       1         Enable lane bonding       FPGA fabric transceiver interface width:         PCS-PMA Interface Width:       Imput clock frequency:         PLL type:       CMU         Input clock frequency:       75.0 MHz         Input clock frequency:       75.0 MHz         Create tx_coreclkin port       Create optional ports         Avaion data interfaces       Imput clock frequency: |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Apply New Update Delete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



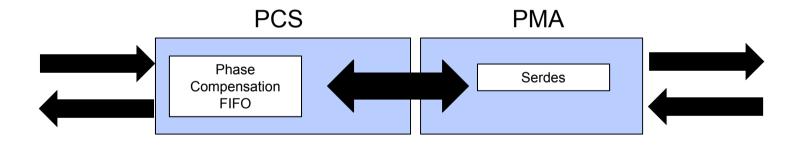
# **Custom PHY IP Parameter Editor (2)**





© 2012 Altera Corporation Public

## Low Latency PHY IP Core


- Generic PHY for implementing low latency configurations in Stratix V transceivers
  - Protocols/interfaces where specific PCS functionality not available and/or designer wants lowest datapath latency
- PCS functionality must be implemented in the FPGA core
- Contains
  - PMA and minimal (or no) PCS
  - PMA and PCS register map
  - Reset controller (optional)
  - PHY management interface
- Supported devices, PCS configurations and data rates
  - Stratix V Low-Latency PCS: 1 14.1 Gbps
    - All protocol-specific blocks bypassed
  - Stratix V GT PMA Direct: 20 28 Gbps



# Low Latency PHY IP

#### Overview

- Provides a simple and a low latency path through the PCS
- Both the Standard and 10G PCS available

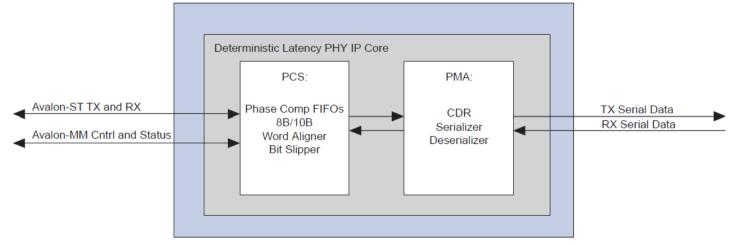


Excellent for custom / proprietary protocols!



# Low Latency PHY IP Parameter Editor

| Block Diagram     Show signals      Iow_latency_phy     phy_mgmt_clk     clock conduit     tx_ready,     phy_mgmt_clk_reset     reset conduit     phy_mgmt     avalon conduit     pll_locked     pll_ref_clk     clock conduit     rx_is_lockedtoref     tx_parallel_data     conduit conduit     rx_is_lockedtodata     rx_clkout     conduit     conduit     rx_clkout     conduit     rx_parallel_data     conduit     rx_clkout     conduit     rx_oready,     reconfig_to_xcvr     conduit     conduit     rx_oready,     reconfig_from_xcvr     attera_xcvr_low_latency_phy | General       Additional Options       Reconfiguration       Analog Options         Device family:       Stratix V         Data path type:       10G       Image: Comparison of the strate |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Info: Iow_latency_phy: PHY IP will require 2 reconfiguration interfaces for connection to the external reconfiguration controller.<br>Info: Iow_latency_phy: Reconfiguration interface offset 0 is connected to the transceiver channel .<br>Info: Iow_latency_phy: Reconfiguration interface offset 1 is connected to the transmit PLL .                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |




© 2012 Altera Corporation Public

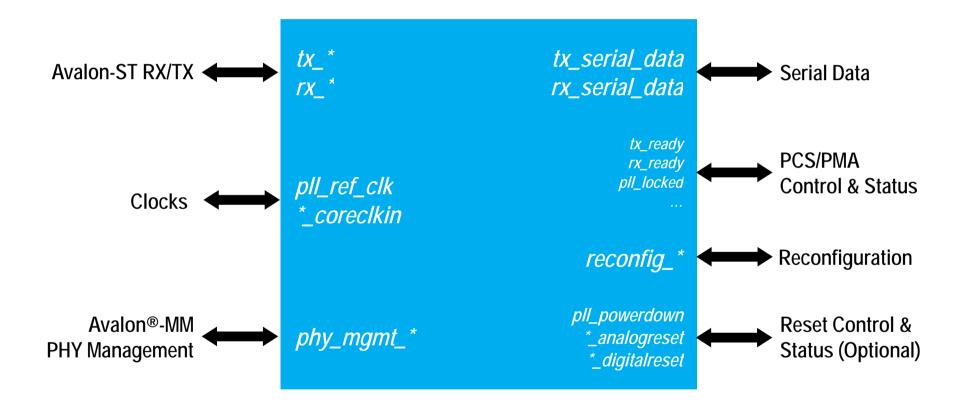
# **Deterministic PHY**

- Overview
  - known timing for the transmit (TX) and receive (RX) datapaths
  - Phase comp fifo in register mode
- Supports
  - Auto-Rate Configuration
    - User initiated via Reconfiguration Controller
  - Support all CPRI/OBSAI data rates in 8G Hard PCS
    - CPRI 614.4Mbps to 9.8304Gbps
    - OBSAI 768Mbps to 6.144Gbps








### **Deterministic PHY IP Parameter Editor**

| Block Diagram         Show signals         bhy_mgmt_clk         bhy_mgmt_clk_reset         reset       conduit         phy_mgmt       avalon         phy_mgmt       avalon         pll_ref_clk       clock         conduit       rx_bitslipboundaryselectout         tx_parallel_data       conduit         conduit       conduit         tx_datak       conduit         reconfig_to_xcvr       conduit         conduit       conduit         rx_datak       rx_datak         rx_conduit       rx_datak         rx_conduit       conduit         rx_datak       reconfig_from_xcvr         altera_xcvr_det_latency       altera_xcvr_det_latency | General       Additional Options       Reconfiguration         Device family:       Stratix V         Mode of operation:       Duplex •         Number of lanes:       1         FPGA fabric transceiver interface width:       32 •         PCS-PMA interface width:       20 •         PLL type:       CMU •         Data rate:       4914.2 Mbps         Base data rate:       4914.2 Mbps •         Input clock frequency:       122.855 MHz •         Call Enable tx_clkout feedback path for TX PLL | Presets |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| <ul> <li>Info: det_lat_phy: PHY IP will require 2 reconfiguration interfaces for connection</li> <li>Info: det_lat_phy: Reconfiguration interface offset 0 is connected to the transcei</li> <li>Info: det_lat_phy: Reconfiguration interface offset 1 is connected to the transmit</li> </ul>                                                                                                                                                                                                                                                                                                                                                   | to the external reconfiguration controller.<br>ver channel .                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |



© 2012 Altera Corporation Public

# Custom/Low Latency/Deterministic PHY IP Block Diagram





# Custom/Low Latency/Deterministic PHY IP Interfaces

- Clock interfaces
  - To reference clock sources
  - To MAC
  - To any additional PCS blocks implemented in FPGA (as needed)
- Avalon-ST TX/RX interfaces to MAC or user logic
- Serial data interface to external channel
- Avalon-MM PHY management interface to MAC or PCS/PMA control logic
- Transceiver reconfiguration interface to reconfiguration controller
- Reset control and status reset control logic
- PCS/PMA control and status (optional) to MAC or PHY control logic



### **Clock Interfaces**

- pll\_ref\_clk: Input reference clock(s)
- tx\_clkout: Output clock from PHY to use for synchronizing TX output data, control and status signals
- rx\_clkout: Output clock from PHY; synchronized to RX data, control and status signals
- tx\_coreclkin: Optional write-side transmitter phase compensation FIFO input clock
- rx\_coreclkin: Optional read-side receiver phase compensation FIFO input clock



# **Avalon-ST Input/Ouput Interfaces**

- Connects MAC to Custom PHY IP core
- Implements simple Avalon-ST interface with no backpressure or latency
  - Interface is always ready to send/receive data
  - Logic must be ready to send/receive as soon as reset is complete
- Transmit signals
  - tx\_parallel\_data: Outgoing input data to PHY
- Receive signals
  - rx\_parallel\_data: Incoming output data from PHY

\* For more information on the Avalon specification, please see the <u>Avalon Interface Specification</u>.



### **Serial Interface**

- Connects transmitter data output(s) and receiver data input(s) to external serial interface
  - Backplane
  - Physical medium dependent (PMD) interface
  - Another FPGA

#### Signals

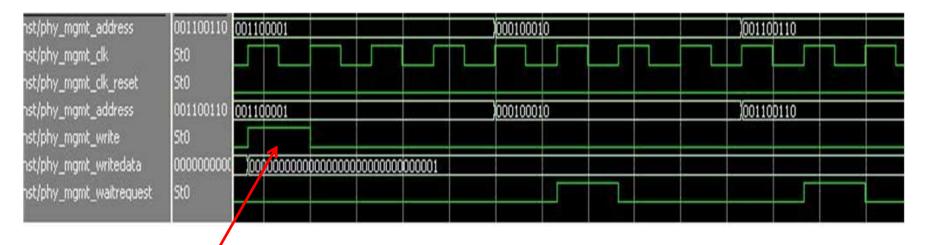
- *tx\_serial\_data*: Transmitter data output
- *rx\_serial\_data*: Receiver data input



## **PHY Management Interface**

- Provides a memory-mapped register space used to access
  - PCS/PMA control and status registers
  - Reset control registers
  - Transceiver reconfiguration registers

#### Avalon-MM standard interface


- 32-bit data, 9-bit address
- Use read/write transactions to access register space

#### Example control/status registers

- PLL locked status
- Reset RX/TX channel
- Bit/byte reversal
- Manual Wordalignment
- FIFO overflow/underflow



# PHY Management Avalon Write Transaction



phy\_mgmt\_write should be asserted for one clock cycle, because phy\_mgmt\_waitrequest is de-asserted

- At rising edge of phy\_mgmt\_clk, provide phy\_mgmt\_ address[8:0], phy\_mgmt\_writedata[31:0] and assert phy\_mgmt\_write
- Hold these values until PHY IP de-asserts phy\_mgmt\_waitrequest
- PHY IP captures phy\_mgmt\_writedata[31:0], de-asserts phy\_mgmt\_waitrequest and ends the transfer



# **PHY Management Avalon Read Transaction**



phy mgmt read should be asserted for 2 clock cycles, because phy\_mgmt\_waitrequest is asserted

- At rising edge of *phy\_mgmt\_clk*, provide *phy\_mgmt\_address[8:0]* and assert *phy\_mgmt\_read*
- Hold these values until PHY IP de-asserts *phy\_mgmt\_waitrequest*
- PHY IP presents valid *phy\_mgmt\_readdata[31:0]* and de-asserts phy\_mgmt\_waitrequest



### **Reset Control & Status Interfaces**

#### Embedded reset controller enabled

- phy\_mgmt\_clk\_reset (Avalon-MM inteface): initiates reset of PHY
- *tx\_ready*: PHY has exited reset and is ready to transmit data
- *rx\_ready*: PHY has exited reset and is ready to receive data

#### Embedded reset controller disabled

- PHY provides signals to connect Transceiver PHY Reset Controller IP core or user-designed reset controller
  - See device handbook for reset timing diagrams
- Examples
  - pll\_powerdown : Resets TX PLL
  - *tx\_cal\_busy*: Indicates transmit channel is being calibrated
  - *rx\_analogreset* : Resets the RX PLL (CDR)
  - *tx\_digitalreset* : Resets the TX PCS blocks



# **Optional PCS/PMA Control and Status** Interface

- Additional signals to determine and control state of PCS/PMA
- Provides instantaneous interaction over using PHY management interface

Examples

- <u>tx\_datak</u>: Input to indicate data/control code (8B/10B encoding enabled)
- *rx\_syncstatus* : Indicates single-lane word alignment
- rx\_rmfifodatainserted : Indicates Rate Match has inserted skip character
- rx\_errdetect : Indicates an 8B/10B code violation or disperity error has occurred
- *tx\_rlv*: Indicates a run length violation has occurred in the receiver
- rx\_datak: Data/control code indicator (8B/10B decoding enabled)
- <u>rx\_runningdisp</u>: Indicates disparity of incoming data (8B/10B decoding enabled)
- *rx\_enabyteordflag*: Triggers byte ordering



## **Native PHY**

- Give control back to the user
- First IP offering is always a family specific "Native" PHY IP.
  - Lower level than PHY IP and altgx.
  - Nothing but the ports and parameters. No embedded reset controller, no AVMM CSR, no fPLLs, etc.
- Protocol specific PHY IP when it makes sense.
  - PIPE, Interlaken, 10GBase-KR, XAUI are good examples.
- Schedule
  - 12.0 Direct Mode (only PMA)
    - Reset controller as a separate optional IP
  - 12.1 Full PCS Support:
    - Megawizard performs validation and provides feedback for all interfaces and parameters.
    - Megawizard gives warnings rather than errors when rules are violated.



# **Stratix V Native PHY**

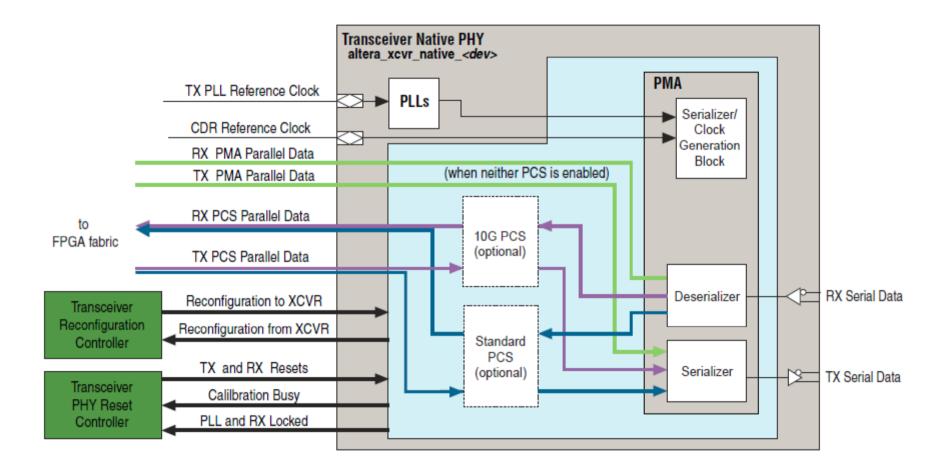
GUI

- Parameters are grouped by functional block (8B/10B, word aligner, etc.)
- Order matches the order from the PCS diagram

#### HDL

- Parameters and ports names are intended to be self explanatory:
- Parameter naming convention:
  - Standard(8G) PCS std\_rx\_<param>, std\_tx\_<param>
  - 10G PCS teng\_rx\_<param>, teng\_tx\_<param>
- Port naming convention
  - Standard(8G) PCS tx\_std\_..., rx\_std\_...
  - 10G PCS tx\_10g\_..., rx\_10g\_...
  - PMA tx\_pma\_..., rx\_pma\_...




## **Native PHY IP Cores**

#### All PHY control/status signals exposed as ports

- Similar to enabling "all optional ports" on other PHY IP cores
- No memory-mapped register interface to control and monitor PHY
- Must build own "register-space" using ports to access in memorymapped system (if required)
- Contains PHY (PCS/PMA) only
  - Reconfiguration controller must be connected manually
  - Reset controller must be connected manually
    - Designer can use Transceiver PHY Reset Controller IP core or create own reset controller



# **Native PHY**





© 2012 Altera Corporation Public

#### **PMA GUI**

| ck Diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| a         a         all powerdown       conduit       conduit       tx_pma_clkout         ix_analogreset       conduit       conduit       tx_strial_data         ix_analogreset       conduit       conduit       conduit       tx_strial_data         ix_analogreset       conduit       conduit       conduit       rx_pma_clkout         ix_analogreset       conduit       conduit       rx_pma_parallel_data         ix_analogreset       conduit       conduit       rx_ma_parallel_data         ix_analogreset       conduit       conduit       rx_s_b_lockedtoref         ix_analogreset       conduit       conduit       rx_cal_busy         ix_serial_data       conduit       conduit       conduit       tx_cal_busy         ix_ser_locktoref       conduit       conduit       conduit       reconfig_form_xcyr         ix_sist_locktoref       conduit       conduit       altera_scyr_nitive_sv         altera_scyr_nitive_sv       altera_scyr_nitive_sv       altera_scyr_nitive_sv | ✓ Parameters         ✓ Show advanced features         Number of data channels:         ▲ Enable TX data path         ✓ Enable RX data path         Selected data path:         pma_direct         Bonding mode:         non_bonded         ♥ PMA         Standard PCS         10G PCS         Data rate:         1250         PMA         Standard PCS         10G PCS         Data rate:         1250         PMA interface width:         80 ♥         TX local clock division factor:         1 ♥         TX PLL base data rate:         1250         ▼ TX PMA         ■ Enable TX PLL dynamic reconfiguration         Use external TX PLL         Number of TX PLLs:         Number of TX PLL reference clocks:         1 ♥         Main TX PLL logical index:         0 ♥         Number of TX PLL reference clocks:         1 ♥         PLL type:         CMU ♥         PL base data rate:         1250 Mbps         Reference clock frequency:         Selected reference clock source: | Mbps Mbps |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of CDR reference clocks:       1         Selected CDR reference clock:       0         Selected CDR reference clock frequency:       125.0 MHz         PPM detector threshold:       1000         Enable rx_pma_bitslip port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |



© 2012 Altera Corporation Public

### **Standard PCS**

| how signals                                                                                                     | al                      | N                  | Parameters<br>^ Show advanced features<br>umber of data channels: 1 |
|-----------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|---------------------------------------------------------------------|
| .pll_powerdown                                                                                                  | al                      | N                  |                                                                     |
| E Contraction of the second | al                      |                    |                                                                     |
| E Contraction of the second |                         |                    | Enable TX data path                                                 |
| E Contraction of the second |                         |                    | Enable RX data path                                                 |
|                                                                                                                 | conduit conduit         |                    | elected data path: pma_direct V                                     |
| tx_digitalreset                                                                                                 | conduit conduit         |                    | onding mode: non_bonded                                             |
| tx_pll_refclk                                                                                                   | conduit conduit         |                    | MA Standard PCS 10G PCS                                             |
| tx_pma_parallel                                                                                                 |                         |                    | Enable standard PCS                                                 |
| rx_analogreset                                                                                                  |                         |                    | andard PCS protocol hint: basic V                                   |
| rx_digitalreset                                                                                                 | conduit conduit rx      | <_is_lockedtodata_ | GA fabric / Standard PCS interface width: 10 🗸                      |
| rx_cdr_refclk                                                                                                   | conduit conduit         |                    | andard PCS / PMA interface width: 10 v                              |
| rx_serial_data                                                                                                  | conduit conduit         | rx_cal_busy        | std_low_latency_bypass_enable                                       |
| rx_set_locktoda                                                                                                 | ita conduit conduit rec | config_from_xcvr   | 8B/10B                                                              |
| rx_set_locktore                                                                                                 | fconduit                |                    | Word Aligner                                                        |
| reconfig_to_xcv                                                                                                 | rr conduit              |                    | Run Length Detector                                                 |
|                                                                                                                 | alte                    | era_xcvr_native_sv | Bit Reversal/Polarity Inversion                                     |
|                                                                                                                 |                         |                    | Rate Match FIFO                                                     |
|                                                                                                                 |                         |                    | Phase Compensation FIF0                                             |
|                                                                                                                 |                         |                    | Byte Serializer/Deserializer                                        |
|                                                                                                                 |                         |                    | Byte Ordering                                                       |
|                                                                                                                 |                         |                    |                                                                     |
|                                                                                                                 |                         |                    |                                                                     |
|                                                                                                                 |                         |                    |                                                                     |
|                                                                                                                 |                         |                    |                                                                     |
|                                                                                                                 |                         |                    |                                                                     |



# **Standard PCS parameters**

|                           |                |                          | Stratix V Transs                         | eiver Native PHY - a                    | -     |
|---------------------------|----------------|--------------------------|------------------------------------------|-----------------------------------------|-------|
| Stratix V T               |                | Native PHY               |                                          |                                         |       |
| altera_xeur_hativ         | t_SV           |                          |                                          | Documen                                 | tatio |
| Diagram                   |                |                          | tid_low_latency_hypass_mable             |                                         |       |
| rsignals                  |                |                          | - 88/140                                 |                                         |       |
| [                         | a              |                          | Enable TX 8b10b encoder                  |                                         | 7     |
|                           | u.             | - I                      | Enable TX 8b10b disparity control        |                                         |       |
| pll_powerdown             | conduit condui | tx_pma_clkout            | Enable RX 8b10b decoder                  |                                         |       |
| tx_analogreset            | conduit condui | the second data          |                                          |                                         |       |
| tx_digitalreset           |                | all lacked               | Word Aligner     Enable RX word aligner: |                                         | -     |
| tx_pll_refclk             | conduit condui | av one direct            | rx_std_word_aligner_ctrl:                | bit_slip                                |       |
| tx_pma_parallel_data      | conduit condui | to any parallel data     |                                          | gige 🗸                                  |       |
|                           | conduit condui |                          | rx_std_word_aligner_sm_data_cnt:         | 3                                       |       |
| rx_analogreset            | conduit condui | 1                        | rx_std_word_aligner_sm_pattern_cnt:      | 3                                       |       |
| rx_digitalreset           | conduit condui | 1 1                      | rx_std_word_aligner_sm_err_cnt:          | 3                                       |       |
| rx_cdr_refclk             | conduit condui | rx_parallel_data         | rx_std_word_aligner_pattern:             | 00000000                                |       |
| rx_serial_data            | conduit condui | tx_std_clkout            | rx_std_word_aligner_pattern_len:         | 7 🔽                                     |       |
| rx_set_locktodata         | conduit condui | rx_std_clkout            | tx_std_bitslip_enable                    |                                         |       |
| x_set_locktoref           | conduit condui | tx_std_pcfifo_full       | 🕆 Run Length Detector                    |                                         | Ē     |
| ×_parallel_data           | conduit condui | tx_std_pcfifo_empty_     | rx_std_run_length_en                     |                                         |       |
| tx_std_coreclkin          | conduit condui | ry std pefifo full       | rx_std_run_length_val:                   | 000000                                  |       |
| rx_std_coreclkin          | conduit condui | ry std pefile empty      | The several / Polarity Inversion         |                                         |       |
| tx_std_elecidle           |                | ov std hutsonder film    | tx_std_bitrev_enable                     |                                         | 1     |
| rx_std_byteorder_ena      | conduit condui | or and hitclinhoundanced | <pre>rx_std_bitrev_enable</pre>          |                                         |       |
|                           | conduit condui |                          | tx_std_poliny_enable                     |                                         |       |
| rx_std_bitrev_ena         | conduit condui | 1 1                      |                                          |                                         |       |
| rx_std_byterev_ena        | conduit condui | 1 1                      | rx_std_polinv_enable                     |                                         |       |
| tx_std_polinv             | conduit condui |                          | Tate Match FIFO                          |                                         | 1     |
| rx_std_polinv             | conduit condui | rx_std_signaldetect      | std_rmfifo_enable                        |                                         |       |
| tx_std_bitslipboundarysel | conduit condui | tt                       | std_rmfifo_pattern1:                     | 000000000000000000000000000000000000000 |       |
| rx_std_bitslip            | conduit condui | rx_cal_busy_             | std_rmfifo_pattern2:                     | 000000000000000000000000000000000000000 |       |
| rx_std_comma_det_ena      | conduit condui | reconfig_from_xcvr       | ✓ std_coreclk_0ppm_enable                |                                         |       |
| rx_std_wa_a1a2size        | conduit        |                          | Phase Compensation FIFO                  |                                         | f     |
| rx_std_prbs_cid_en        | conduit        |                          | tx_std_pcfifo_mode:                      | low_latency                             | 1     |
| recoming to sove          | conduit        |                          | rx_std_pcfifo_mode:                      | low_latency 🖌                           |       |
|                           |                | ADMA, NYE, MENR, SY      | * Byte Serializer/Deserializer           |                                         |       |
|                           |                |                          | tx_std_byte_ser_enable                   |                                         |       |
|                           |                |                          | tx_std_byte_ser_mode:                    | div2 🔽                                  |       |
|                           |                |                          | rx_std_byte_deser_enable                 |                                         |       |



### **10G PCS – Parameter groups**

|                                                           | Stratix V Transceiver Native PHY - a |               |
|-----------------------------------------------------------|--------------------------------------|---------------|
| Stratix V Transceiver Native PHY<br>altera_xcvr_native_sv |                                      | Documentation |
| Block Diagram                                             | Show advanced features               |               |
| Show signals                                              | Number of data channels: 1           |               |
|                                                           | ☑ Enable TX data path                |               |
| a                                                         | ✓ Enable R× data path                |               |
| pll_powerdownconduittx_pma_cli                            | Selected data path: 10G 🗸            |               |
| tx_analogreset conduit conduit tx_serial_                 | Bonding mode: non_bonded 🗸           |               |
| tx_digitalreset conduit conduit pll_loc                   | PMA Standard PCS 10G PCS             |               |
| tx_pll_refclk conduit conduit rx_pma_cli                  | enable_teng                          |               |
| tx_pma_parallel_data conduit conduit rx_pma_parallel_     | teng_protocol_hint: basic            |               |
| rx_analogreset conduit conduit rx_is_lockedt              | teng_pld_pcs_width: 40 V             |               |
| rx_digitalreset conduit conduit rx_is_lockedto            | teng_pcs_pma_width: 40 🗸             |               |
| rx_cdr_refclk conduit conduit rx_parallel_                | TX FIFO                              |               |
| rx_serial_data conduit conduit tx_10g_cli                 | ► RX FIFO                            |               |
| rx_set_locktodata conduit conduit rx_10g_cli              | Frame Gen/Sync                       |               |
| rx_set_locktoref conduit conduit rx_10g_clk3;             | CRC32 Generator/Checker              |               |
| tx_parallel_data conduit conduit rx_10g_con               | ▶ 64/66                              |               |
| tx_10g_coreclkin conduit conduit tx_10g_fifo              | Scrambler                            |               |
| rx_10g_coreclkin                                          |                                      |               |
| tx_10g_control conduit conduit tx_10g_fifo_er             | Disparity Generator / Checker        |               |
| tx_10g_data_valid conduit conduit tx_10g_fifo_per         | ▶ Gearbox                            |               |
| tx_10g_diag_status conduit conduit tx_10g_fife            | Bits lip                             |               |
| rx_10g_fifo_rd_en conduit conduit tx_10g_fifo_ir          | ▶ Block Sync                         |               |
| rx_10g_fife_align_clr conduit conduit rx_10g_data_        | ▶ BER                                |               |
| rx_10g_fifo_align_enconduitrx_10g_fifo                    | F Test/Debug                         |               |
| tx_10g_bitslip conduit conduit rx_10g_fife_               |                                      |               |
| rx_10g_bitslip conduit conduit rx_10g_fife_er             |                                      |               |
| tx_10g_burst_en conduit conduit rx_10g_fifo_per           |                                      |               |
| ev 10a diea ele                                           |                                      |               |

Cancel Finish

Info: a: PHY IP will require 2 reconfiguration interfaces for connection to the external reconfiguration controller.

Info: a: Reconfiguration interface offset 0 is connected to the transceiver channel.

Info: a: Reconfiguration interface offset 1 is connected to the transmit PLL.

### **10G PCS parameters**

| ×               |                                 |         |                       | Stratix V | Transceiv      | er Native PHY       | 7 <b>8</b> 1     |        |
|-----------------|---------------------------------|---------|-----------------------|-----------|----------------|---------------------|------------------|--------|
| Stratix V Tra   | insceiver Native PHY            |         |                       |           |                |                     |                  |        |
| Stratix V Tra   |                                 |         |                       |           |                |                     |                  | Decume |
| * Block Diagram |                                 |         |                       | 10        |                |                     |                  |        |
| Show signals    |                                 |         |                       |           | teng_txfife    |                     | phase_comp w     |        |
|                 | 1                               | _       |                       |           | txmg_1xfife    | ufull:              | 31               |        |
|                 | *                               |         |                       |           | teng_txfife    |                     | 0                |        |
|                 | pll_powerdown                   | conduit | tx_pma_clkout         |           | THE STREET     |                     | 29               |        |
|                 | CONDUCT CONDUCT                 |         | tx_serial_data        |           | teng_txfifo    | _pempty:            | 7                |        |
|                 | conduct                         | conduit | pll_locked            |           | <b>RX FIFO</b> |                     |                  |        |
|                 | tx_origitaireset conduit        | conduit |                       |           | teng_rxfifo    | _mode:              | phase_comp 🔽     |        |
|                 | Condus                          | conduit | rx_pma_clkout         |           | teng_rxfifo    | p_full:             | 31               |        |
|                 | tx_pma_parallel_data conduit    | conduit | rx_pma_parallel_data  |           | teng_rxfifo    | _empty:             | 0                |        |
|                 | rx_analogreset conduit          | conduit | rx_is_lockedtoref     |           | teng_rxfifo    | o_pfull:            | 23               |        |
|                 | rx_digitalreset conduit         | conduit | rx_is_lockedtodata    |           | teng_rxfifo    |                     | 7                |        |
|                 | _rx_cdr_refclkconduit           | conduit | rx_parallel_data      |           | teng_rxfifo    | _align_enable:      | 0                |        |
|                 | rx_serial_data conduit          | conduit | tx_10g_clkout         |           | teng_rxfifo    | _control_enable:    | 0                |        |
|                 | rx_set_locktodata conduit       | conduit | rx_10g_clkout         |           | 🔻 Frame Ge     | n/Sync              |                  |        |
|                 | rx_set_locktoref                | conduit | rx_10g_clk33out       | =         | teng_t>        | <_frmgen_enable     |                  |        |
|                 | tx_parallel_data conduit        | conduit | rx_10g_control        |           | teng_tx_fr     | mgen_user_length:   | 2048             |        |
|                 |                                 | conduit | tx_10g_fifo_full      |           | teng_r:        | <_frmsync_enable    |                  |        |
|                 | rx_10g_coreclkin conduit        | conduit | tx_10g_fifo_pful      |           | teng_rx_fr     | msync_user_length:  | 2048             |        |
|                 | ty 10s control                  |         | tx_10g_fifo_empty     |           | teng_frmg      | ensync_diag_word:   | 64000000000000   |        |
|                 | conduit                         | conduit | tx_10g_fifo_pempty    |           | teng_frmg      | ensync_scrm_word:   | 28000000000000   |        |
|                 | tx_10g_diag_status              | conduit | tx_10g_fifo_del       |           | teng_frm g     | ensync_skip_word:   | lelelelelele     |        |
|                 | Condust                         | conduit |                       |           | teng_frmg      | ensync_sync_word:   | 78f678f678f678f6 |        |
|                 | rx_10g_fifo_rd_en               | conduit | tx_10g_fifo_insert    |           | teng_t>        | <_frmgen_burst_enab | ble              | -      |
|                 | rx_10g_fifo_align_clr conduit   | conduit | rx_10g_data_valid     |           | T CRC32 6      | enerator/Checker    |                  |        |
|                 | rx_10g_fifo_align_en            | conduit | rx_10g_fifo_full      |           |                | crcgen_enable       |                  |        |
|                 | tx_10g_bitslip conduit          | conduit | rx_10g_fifo_pful      |           |                | <_crcchk_enable     |                  |        |
|                 | rx_10g_bitslip conduit          | conduit | rx_10g_fifo_empty     |           |                | <_erectik_enable    |                  |        |
|                 | tx_10g_burst_en conduit         | conduit | rx_10g_fifo_pempty    |           | <b>~ 64/66</b> |                     |                  |        |
|                 | rx_10g_disp_clr conduit         | conduit | rx_10g_fifo_de        |           |                | <_64b66b_enable     |                  |        |
|                 | rx_10g_highber_clr_cnt          | conduit | rx_10g_fifo_insert    |           | teng_m         | x_64b66b_enable     |                  |        |
|                 | rx_10g_clr_errblk_count conduit | conduit | rx_10g_align_val      |           | teng_t>        | <_sh_err            |                  |        |
|                 | rx_10g_prbs_err_clr conduit     | conduit | rx_10g_blk_lock       |           | ▼ Scramble     | r                   |                  |        |
|                 | recentin to your                |         | rx_10g_blk_sh_err     |           | teng_t>        | <_scram_enable      |                  |        |
|                 | conduit                         | conduit | rx_10g_scram_err      |           | teng_m         | <_scram_enable      |                  |        |
|                 |                                 | conduit | tx_10g_frame          |           |                | n_seed_mode:        | min 🗸            |        |
|                 |                                 | conduit |                       |           | teng_scrar     | n_user_seed:        | 00000000000000   |        |
|                 |                                 | conduit | rx_10g_frame          |           | - Disparit     | Constant (Charles   |                  |        |
|                 |                                 | conduit | rx_10g_frame_lock     |           |                | Generator/Checker   |                  |        |
|                 |                                 | conduit | rx_10g_frame_mfrm_err |           |                | <_dispgen_enable    |                  |        |
|                 |                                 | conduit | rx_10g_frame_sync_err | ×         | teng_r         | <_dispchk_enable    |                  |        |



# **PHY IP Output Files for Compilation**

#### <phy\_instance\_name>.qip

- Script file that points to all files needed for synthesis
- Add file to Quartus II project

#### phy\_instance\_name>.v/.vhd

Wrapper file that instantiates and configures the PHY IP core megafunction

#### phy\_instance\_name> folder

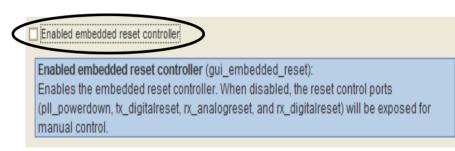
Combination of Verilog and SystemVerilog files representing PHY IP core components

#### phy\_instance\_name>.ppf

- Stores top-level I/O and node information for importing into Pin Planner
- Useful when pin layout must be assigned before top-level file is completed



# **Additional PHY IP Cores**


#### Transceiver Reconfiguration Controller

- Discussed later
- Transceiver PHY Reset Controller



#### **Transceiver PHY Reset Controller IP Core**

- Fully customizable reset solution
  - Provides most flexible pre-built reset solution
  - Enable as many or as few control/status signals as you need
- Works with all non-protocol-specific PHY IP cores
  - Must disable embedded controller, if enabled by default



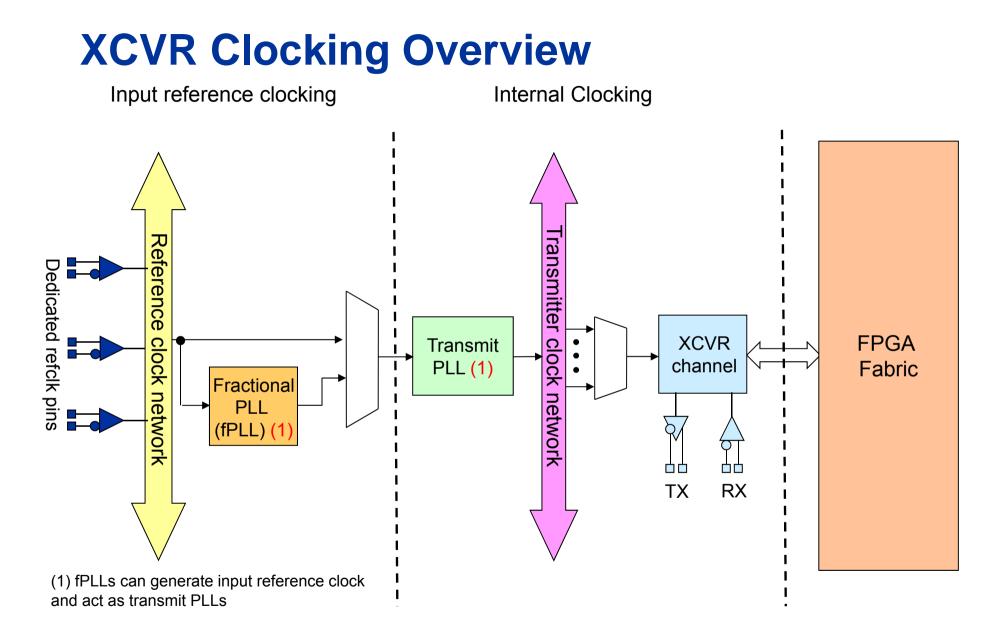
- Generates clear text Verilog file
  - User can modify as desired



#### **Reset Controller Options**

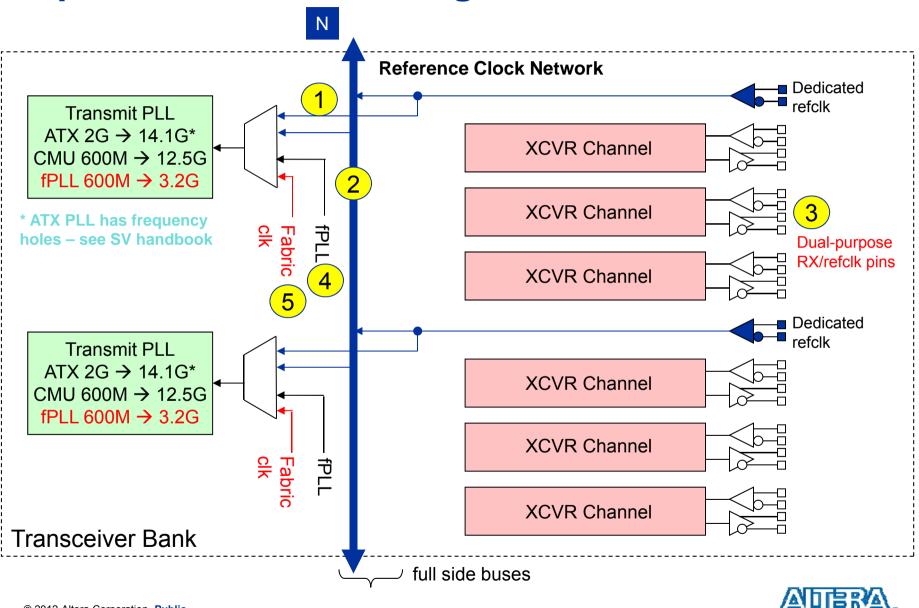
- Shared or individual reset controls per channel in transceiver instance
- Shared or separate reset controls per each RX channel
- Shared or separate reset controls per each TX channel
- Option for manual or automatic RX/TX reset recovery when PLLs lose lock
- Configurable timing delay



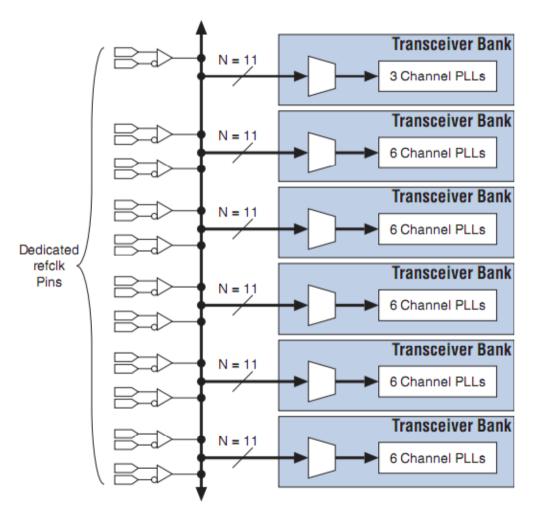

#### **Reset Controller Parameter Editor**

| Block Diagram Show signals $phy_reset$ clock clo | <ul> <li>General Options         <ul> <li>Number of transceiver channels:</li> <li>Number of TX PLLs:</li> <li>Input clock frequency:</li> <li>250</li> <li>MHz</li> <li>Synchronize reset input</li> <li>Use fast reset for simulation</li> </ul> </li> <li>TX PLL         <ul> <li>Enable TX PLL reset control</li> <li>pl_powerdown duration:</li> <li>1000</li> <li>ns</li> <li>Synchronize reset input for PLL powerdown</li> </ul> </li> <li>TX Channel         <ul> <li>Use separate TX reset per channel</li> </ul> </li> </ul> | Documentation |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ose separate 1X reset per channel         TX automatic reset recovery mode:       Manual         tx_digitalreset duration:       20         pll_locked input hysteresis:       0         TX Channel       0         Tx automatic reset recovery mode:       0         Tx Channel       Image: separate RX reset per channel         RX automatic reset recovery mode:       Auto         Ix analogreset duration:       40         Ix analogreset duration:       400         Ix digitalreset duration:       4000                      | Apply         |




© 2012 Altera Corporation Public







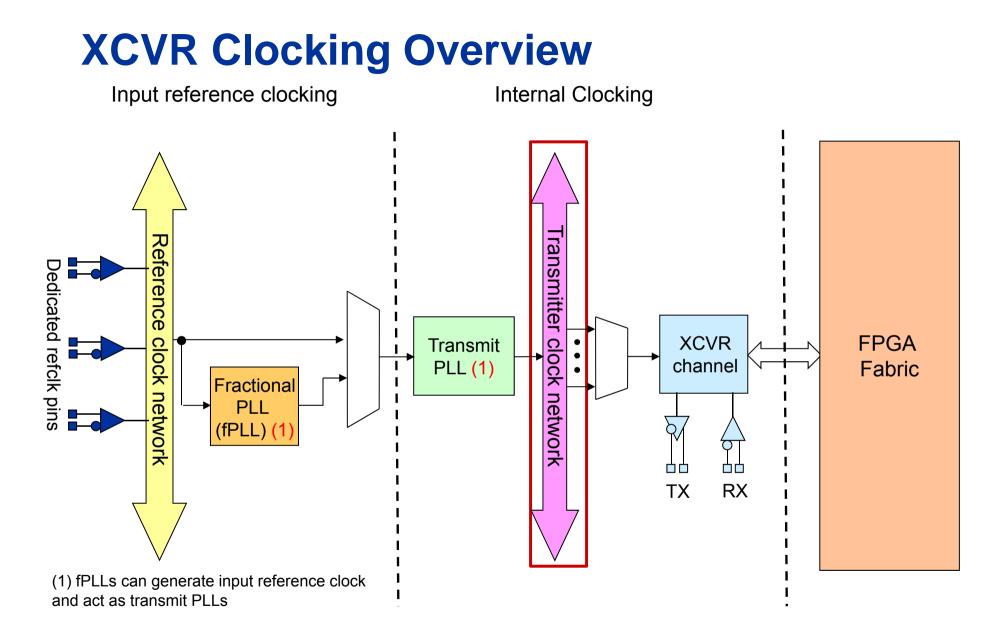

#### **Input Reference Clocking**



#### **Reference Clock Network**

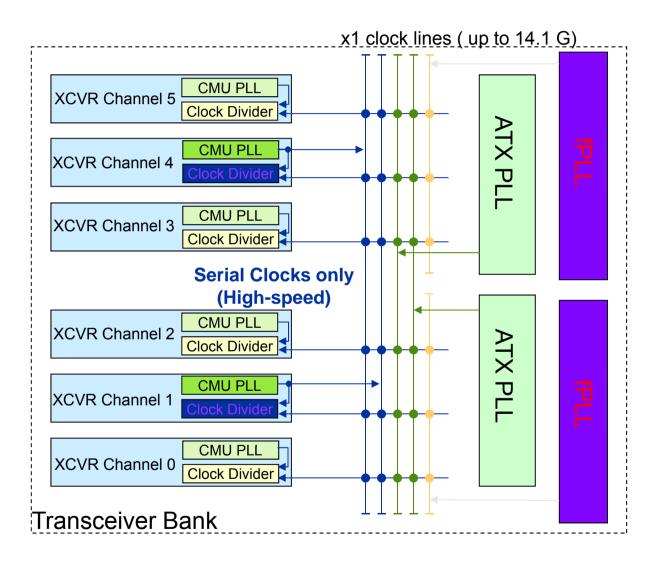


- Dedicated clock routing resources spanning the sides of the FPGA
  - Driven by reference clock pins
  - One clock route per reference clock pin
  - Exception: Arria V GT reference clock networks are segmented
- Allow reference clocks to be used by any PLL on that side of the FPGA




# **Input Reference Clocking**

#### Clock source in order of performance

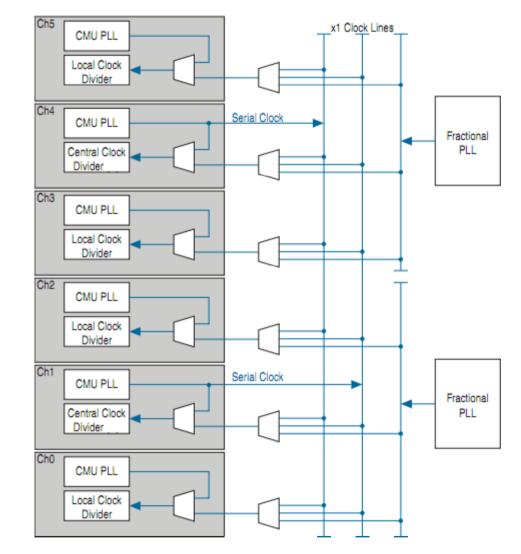

- 1. Dedicated refclk pin (direct path)
  - Ideally closest to the TX PLL
- 2. Dedicated refclk pin using reference clock network
  - Within transceiver bank
  - Outside of transceiver bank
- 3. Dual purpose RX/refclk pins
- 4. fPLL
  - fPLL → TX PLL cascading can lead to high jitter
- 5. Clock from FPGA Fabric





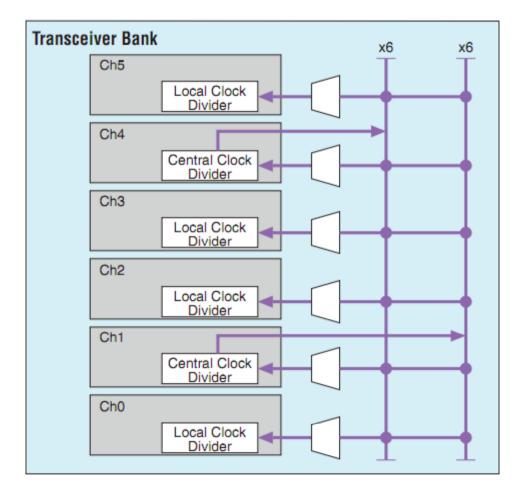


#### **Internal Clocking: Non-bonded Configurations**






© 2012 Altera Corporation Public

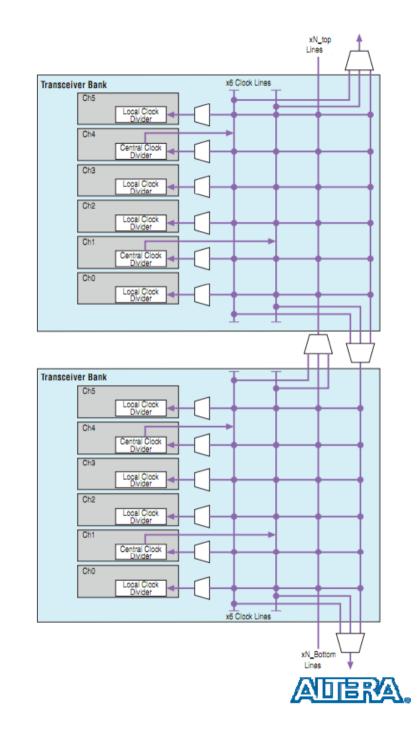

# **x1 Clock Network**

- Span up to one 6transceiver bank
- Used to carry highspeed clock to transceiver channels
  - Drives each channel's local clock divider
  - Non-bonded operation only
- Clock source
  - Ch1/Ch4 CMU PLL
  - Fractional PLL
  - ATX PLL



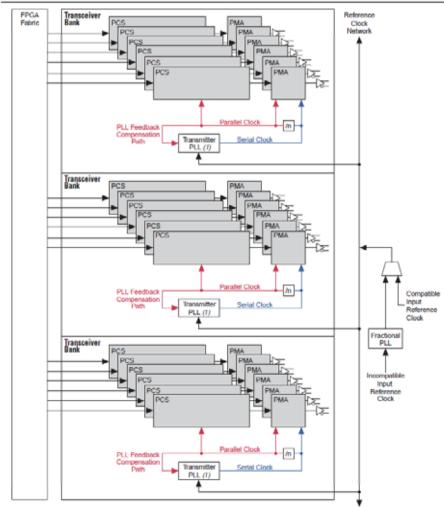


### **x6 Clock Network**




- Span up to one 6transceiver bank
- Used to carry both highspeed serial and lowspeed parallel clocks to channels within a 6transceiver bank
  - Bonded operation only
- Clock source
  - Central clock divider



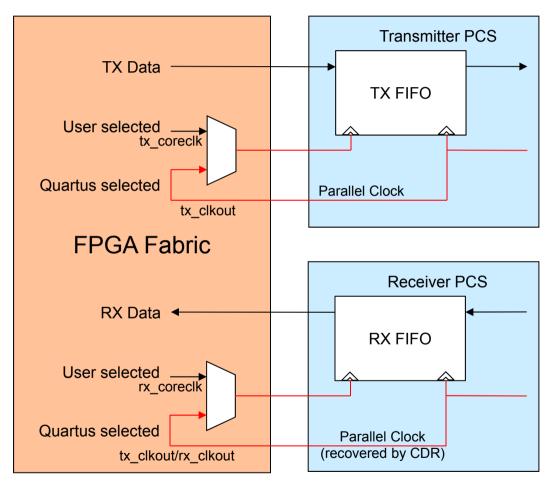

## **xN Clock Network**

- Span the entire side of the device
- Used to carry both highspeed serial and low-speed parallel clocks from x6 line to other transceiver banks
  - Bonded operations only
- Clock source
  - x6 clock network (from central clock divider)



#### Internal Clocking: PLL Feedback Compensation Path Bonding

Figure 2–15. Three Transceiver Bank Channels Bonded Using the PLL Feedback Compensation Path




Note to Figure 2–15: (1) The transmitter PLL can be an ATX PLL or a GMU PLL. You can have up to six channels per bank with an ATX PLL and five channels per bank with a GMU PLL.

- For bonding channels beyond a transceiver bank with the controlled skew
- Removes divider uncertainty by aligning parallel clk with refclk
- Refclk restriction
  - refclk frequency has to be the same as tx\_clkout
  - fPLL can be used to match refclk and parallel clock



#### **FPGA Fabric-Transceiver Interface Clocking**



- Quartus selected option is best for:
  - Bonded configurations
- User selected option is best for:
  - Saving FPGA fabric clock resources for multiple identical channels



# **Transceiver Reconfiguration**



© 2012 Altera Corporation—Public

### Introduction

What is transceiver reconfiguration?

Reconfiguration of single or multiple transceiver channel settings during device operation

#### Reconfiguration of

- Physical media attachment (PMA) settings
- Physical coding sublayer (PCS) settings
- Transceiver Clocking (PLL settings)
- Run time modification does not interrupt operation of adjacent transceiver channel(s)



## **Transceiver Reconfiguration Uses**

- Adjust transmitter/receiver buffer settings while bringing up link to fine-tune signal integrity
  - Increases flexibility in board/system design
- Increase/decrease data rate due to downstream/upstream device
- Support newer, changing serial protocols
- Add design flexibility by supporting multiple protocols with same hardware



# **Reconfguration and Device Support**

| Reconfiguration Feature    |                             | Device Family |              |           |  |
|----------------------------|-----------------------------|---------------|--------------|-----------|--|
|                            |                             | Stratix V     | Arria V      | Cyclone V |  |
| Calibration                |                             | ✓             | $\checkmark$ | ✓         |  |
| Analog                     | PMA Reconfiguration         | ✓             | $\checkmark$ | ✓         |  |
| Analog                     | EyeQ, AEQ, DFE              | ✓             |              |           |  |
| Loopback                   | Pre-CDR reverse serial      | ✓             | $\checkmark$ | ✓         |  |
|                            | Post-CDR reverse serial     | ✓             | $\checkmark$ | ✓         |  |
| PLL<br>Reconfiguration     | Ref Clk Switching           | ✓             | ✓*           | ✓*        |  |
|                            | TX PLL Reconfiguration      | ✓             | $\checkmark$ | ✓*        |  |
| Channel<br>Reconfiguration | RX CDR Reconfiguration      | ✓             | $\checkmark$ | ✓*        |  |
|                            | PCS Reconfiguration         | ✓             | $\checkmark$ | ✓*        |  |
|                            | TX PLL Switching            | ✓             | $\checkmark$ | ✓*        |  |
|                            | TX Channel Divider          | ✓             | $\checkmark$ | ✓*        |  |
|                            | FPGA/Transceiver Data Width | ✓             | $\checkmark$ | ✓*        |  |

\* Support enabled in a future version of the Quartus II software.



# **Transceiver Reconfiguration Controller**

- Provides simple way to change transceiver settings dynamically
  - All types of reconfiguration require using controller
  - Users must design custom hardware or software to interact with controller based supported reconfiguration types
- Uses general FPGA resources (soft IP)
- Connects to transceiver megafunctions/IP cores using dedicated interface
  - Some PHY IP blocks implemented with embedded controller core
- Required in all PHY IP core designs, even if no intention of changing transceiver settings



# **Reconfiguration Modes**

#### Register-based

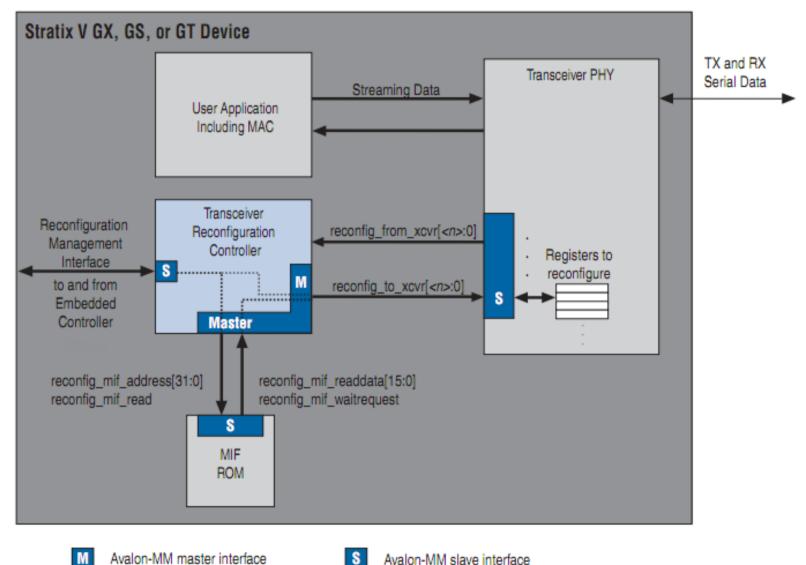
- Reconfiguration initiated by read and write operations to controller registers to reconfigure individual transceiver settings
- Controller translates operations to specific transceiver registers

#### Streamer-based (MIF Mode)

- Transceiver configuration data stored in ROM/RAM using a memory initialization file (MIF)
- Reconfiguration initiated by read and write operations to controller registers
- Upon initialization, controller steams MIF configuration data into transceiver registers to update transceiver settings all in one step

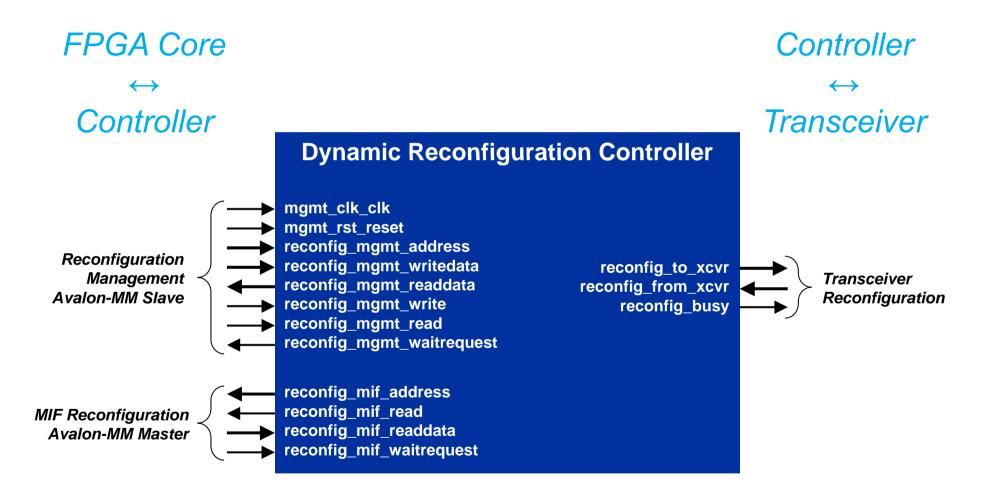
#### Streamer-based (Direct Write Mode)

- Reconfiguration initiated by read and write operations to controller registers
- the user individually writes MIF words into individual transceiver registers




### **Reconfiguration Features vs. Modes**

| Feature                  | Register-Based | Streamer-Based |
|--------------------------|----------------|----------------|
| PMA                      | $\checkmark$   | ✓              |
| Loopback                 | $\checkmark$   |                |
| EyeQ                     | $\checkmark$   |                |
| AEQ                      | $\checkmark$   |                |
| DFE                      | $\checkmark$   |                |
| ATX Tuning (Calibration) | $\checkmark$   |                |
| Reference Clock Switch   | $\checkmark$   | ✓              |
| PLL Reconfiguration      | $\checkmark$   | ✓              |
| Channel Reconfiguration  |                | ✓              |




# **Reconfiguration Diagram**





#### **Reconfiguration Controller Interfaces**





# **Reconfiguration Management Interface**

- Interfaces between reconfiguration control logic and controller
  - User logic employs read and write transfers using Avalon-MM master to setup, start and monitor reconfiguration
  - Example Avalon-MM masters: embedded processor, state machine, JTAG Avalon Master component

#### Interfaces

- mgmt\_clk\_clk
  - Provides a clock for the reconfiguration interface
  - Supported frequency range: 100 125 MHz
- mgmt\_rst\_reset
  - Resets the controller
- reconfig\_mgmt\_\*
  - Avalon-MM slave interface made up of 7-bit address, 32-bit data and read/write enable signals

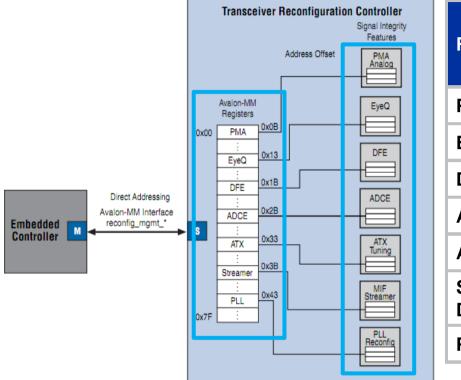


## **MIF Reconfiguration Interface**

- Avalon-MM master interface between controller and MIF storage location
  - Controller accesses MIF data based on requests received through its slave interface
- Interface
  - reconfig\_mif\_\*
    - Master interface made up of 32-bit address, 16-bit data, read enable and waitrequest signals



# **Transceiver Reconfiguration Interface**


- Dedicated interface between controller and transceiver IP core
  - Controller reads values from and writes values to transceiver registers based on requests received through its slave interface
- Each transceiver instance has 1 reconfiguration interface per each duplex transceiver channel and per each TX PLL

#### Signals

- reconfig\_to\_xcvr[(n\*70)-1..0]
  - Output signal from controller to transceiver IP core instance(s)
  - n = number of reconfiguration interfaces
- reconfig\_from\_xcvr[(n\*46)-1..0]
  - Input signal to controller from transceiver IP core instance(s)
  - n = number of reconfiguration interfaces
- reconfig\_busy
  - Output signal that indicates when a reconfiguration operation is in progress
  - Similar to the busy bits (bit 8) in the control and status registers



# **Reconfiguration Controller Address Map**



| Reconfiguration Feature               | 7-bit Address<br>Range |      |  |
|---------------------------------------|------------------------|------|--|
|                                       | Start                  | End  |  |
| РМА                                   | 0x08                   | 0x0C |  |
| EyeQ                                  | 0x10                   | 0x14 |  |
| DFE                                   | 0x18                   | 0x1C |  |
| AEQ                                   | 0x28                   | 0x2C |  |
| ATX PLL Calibration                   | 0x30                   | 0x34 |  |
| Streamer-Based/<br>Direct Write-Based | 0x38                   | 0x3C |  |
| PLL Reconfiguration                   | 0x40                   | 0x44 |  |

Features assigned defined address ranges in reconfiguration controller's Avalon-MM address space

- User logic sets up/activates a feature in controller by accessing registers in feature's address range
- Within controller, features have own internal address spaces for accessing specific feature settings
- User logic programs feature setting by writing a value into an offset register (e.g. PMA=0x0B, EyeQ=0x13). The offset value corresponds to the internal address of that feature setting.
  - Reconfiguration controller uses offset value to access the correct internal address for that feature

\* Any undefined register addresses are reserved.



## **Controller Offset Example**

#### **Transceiver Reconfiguration Controller**

| Controller Avalon-MM Address Space |      |                                       |  | Internal PMA Address Space |                     |      |                                          |                     |
|------------------------------------|------|---------------------------------------|--|----------------------------|---------------------|------|------------------------------------------|---------------------|
| Address                            | Data | Register Name                         |  |                            | Offset<br>(Address) | Data | Register Name                            |                     |
| 0x08                               | 0x02 | PMA Logical<br>Channel Address        |  | $\rightarrow$              | 0x0                 | 0x28 | VOD                                      |                     |
| 0x09                               |      | PMA Physical                          |  | Controller                 | 0x01                |      | Pre-emphasis Pre-<br>Tap                 |                     |
| 0x0A                               | 0x01 | Channel Address<br>PMA Control/Status |  | Logic                      | 0x02                |      | Pre-emphasis 1 <sup>st</sup><br>Post-Tap |                     |
| 0x0B                               | 0x10 | PMA Offset                            |  |                            | 0x03                |      | Pre-emphasis 2 <sup>nd</sup><br>Post-Tap |                     |
| 0x0C                               | 0x3  | PMA Offset Data                       |  |                            |                     | 0x10 | 0x3                                      | Equalization DC Gai |
| •••                                |      | •••                                   |  |                            | •••                 |      | •••                                      |                     |



# **Logical Channel Numbers**

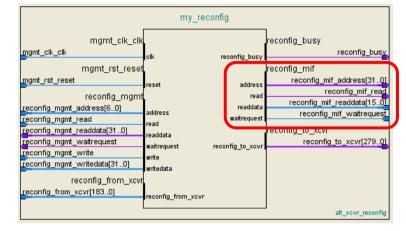
- Reference numbers used to represent actual physical transceiver channels and TX PLLs
- Used during reconfiguration to target specific channels or PLLs
  - Controller translates read/write operations to logical channel numbers to their corresponding physical channels
- Assigned to physical transceivers automatically based on
  - Number of channels and TX PLLs in transceiver IP cores
  - Order in which the reconfiguration interfaces are physically connected to controller
  - View the assignment results in the Transceiver Reconfiguration Report (Compilation Report  $\rightarrow$  Fitter  $\rightarrow$  GXB Reports)



## **Basic Register-Based Write Operation**

- 1. Read feature *control and status* register to determine *busy* bit is 0
- 2. Write target logical channel number to feature's logical\_channel\_address register
- 3. Write the internal address (offset) value to feature's offset register
- 4. Write the target value for the feature setting into the feature *data* register
- 5. Write feature's *control and status* register *write* bit with 1
- 6. Transceiver is programmed when *busy* bit is 0 again




## **Basic Register-Based Read Operation**

- Read feature *control and status* register to determine *busy* bit is 0
- 2. Write target logical channel number to feature's logical\_channel\_address register
- 3. Write the internal address (offset) value to feature's offset register
- Write feature's *control and status* register *read* bit with 1
- 5. Read operation is complete when *busy* bit is 0 again
- 6. Read the feature's *data* register for the value of the feature setting returned by the read operation



## **Reconfiguration Modes: Streamer Based**

- Two available modes:
  - Mode 0: MIF Streaming
  - Mode 1: Direct Writes



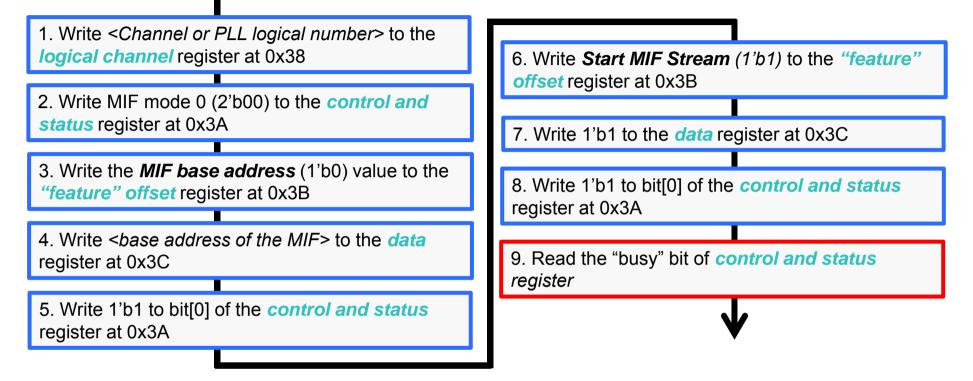
Reconfiguration data is contained in a MIF

#### Supports:

- PLL counters
- Reference clocks
- Local clock dividers

... basically you get just about everything not available through register based



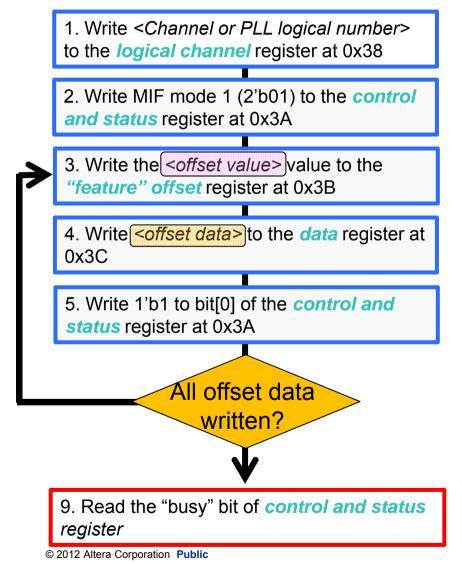

#### **Streamer Based - Modes**

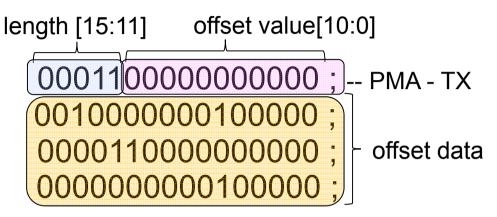
- Both modes uses the Streamer module in the Reconfiguration controller
  - Unlike dedicated feature blocks (PMA, Reference Clock, etc) the Streamer module uses the same address to carry out reconfiguration
    - Data values are different though
- Mode 0: MIF Streaming
  - Streams the entire content of a MIF
  - No nonsense reconfiguration
  - "One command" and reconfiguration is done
- Mode 1: Direct Writes
  - No MIF streaming
  - Selectively write reconfiguration data
  - May require multiple writes / reads



© 2012 Altera Corporation Public

# **Modes 0 MIF Streamer - Flow**





Steps similar to register based reconfiguration

Steps { 3 , 4 , 5 } and { 6 , 7 , 8 } use the same sequence just writing different values



## **Modes 1 Direct Writes - Flow**





- The length field determines the number of loops
- Must increment the offset value by 0x1 after each loop



# **Enabling Transceiver Reconfiguration**

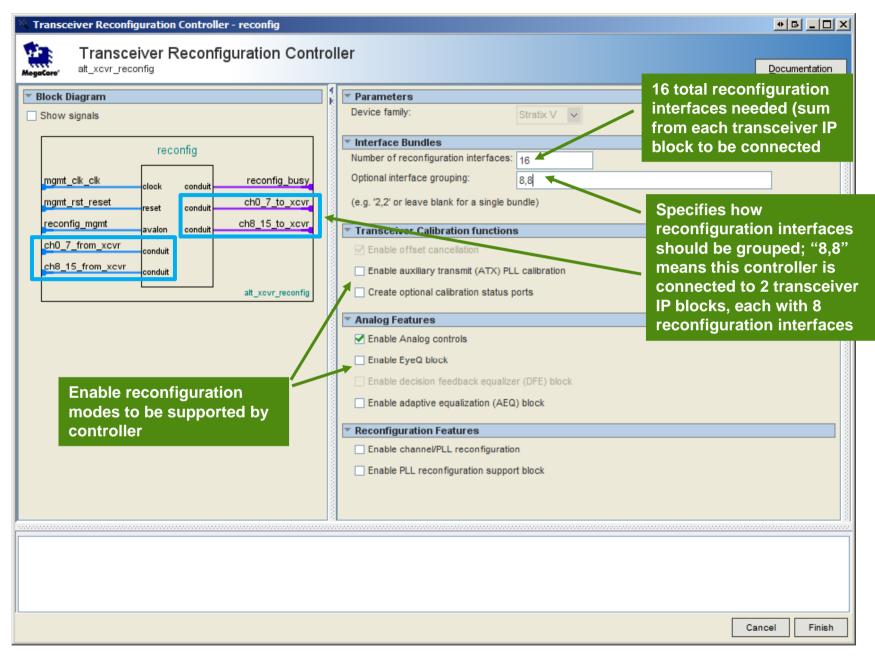
### User must configure

- 1. IP megafunction containing embedded transceivers
- 2. Transceiver Reconfiguration Controller megafunction

#### Purpose

- Enable reconfiguration options
- Ensure controller has the correct number of reconfiguration interfaces




#### Custom PHY - custom



#### Custom PHY



\* B \_ D X





# **Reconfiguration Interface Merging**

- All transceiver channels and TX PLLs generate an interface on the controller and transceiver megafunction
- Quartus II software automatically merges interfaces as transceiver functionality is merged
   e.g. Shared TX PLLs
- Starting with separate interfaces gives Fitter more flexibility in placement as it can merge any interfaces as needed



# **Controller Design Example Scenarios**

- 1. Connecting to 1 PHY IP core with bonded channels
- 2. Connecting to 1 PHY IP core with non-bonded channels
- 3. Connect to 2 PHY IP cores



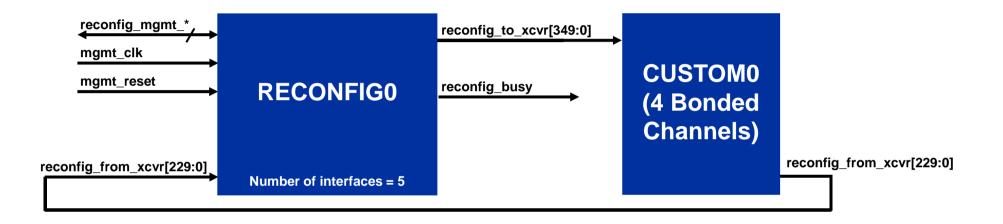
#### **One PHY IP Core with Bonded Channels**

One 4-channel Custom PHY IP core instance
One transceiver reconfiguration controller



# **Example 1 Setup**

#### **PHY IP Instance (CUSTOM0)**

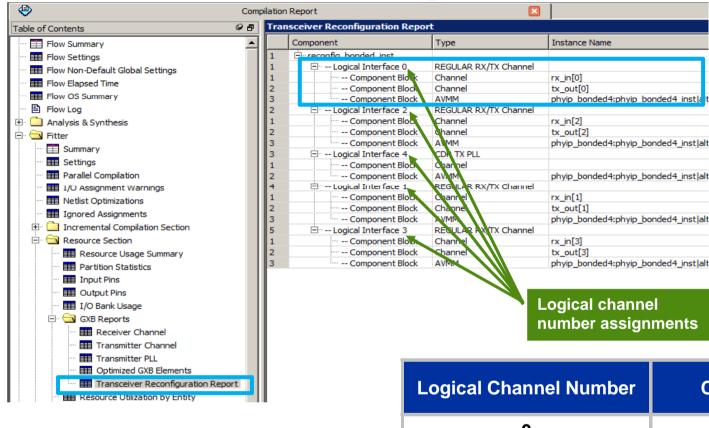

- 1. Configure Custom PHY IP for 4 bonded, full-duplex channels
- 2. Enable reconfiguration features (if needed)
- 3. Note the number of reconfiguration interfaces in Messages window
  - 5 interfaces total
  - 0 3 : Transceiver channels
  - 4: TX PLLs

#### **Reconfiguration Controller Instance (RECONFIG0)**

- 1. Enable reconfiguration features
- 2. Set number of reconfiguration interfaces to <u>5</u>



# **Example 1 Block Diagram w/ Connections**




 $CUSTOM0.reconfig_from_xcvr[229:0] \Rightarrow RECONFIG0.reconfig_from_xcvr[229:0]$  $RECONFIG0.reconfig_to_xcvr[349:0] \Rightarrow CUSTOM0.reconfig_to_xcvr[349:0]$ 



© 2012 Altera Corporation Public

### **Transceiver Reconfiguration Report**



| Logical Channel Number | Channel Name |
|------------------------|--------------|
| 0                      | Channel 0    |
| 1                      | Channel 1    |
| 2                      | Channel 2    |
| 3                      | Channel 3    |
| 4                      | TX (CMU) PLL |



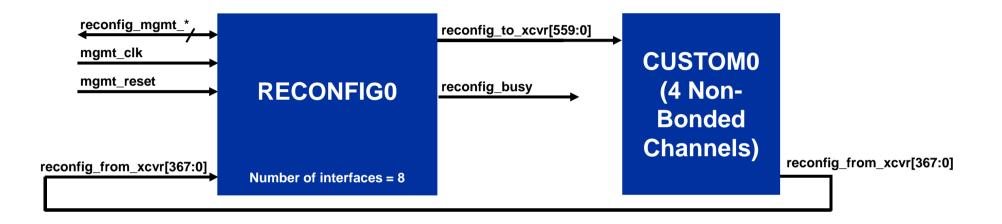
#### **One PHY IP Core with Non-Bonded Channels**

One 4-channel Custom PHY IP core instance
One transceiver reconfiguration controller



### **Example 2 Setup**

#### **PHY IP Instance (CUSTOM0)**


- 1. Configure Custom PHY IP for 4 non-bonded, full-duplex channels
- 2. Enable reconfiguration features (if needed)
- 3. Note the number of reconfiguration interfaces in Messages window
  - 8 interfaces total
  - 0 3 : Transceiver channels
  - 4 7 : TX PLLs

#### **Reconfiguration Controller Instance (RECONFIG0)**

- 1. Configure transceiver reconfiguration controller
- 2. Enable reconfiguration features
- 3. Set number of reconfiguration interfaces to <u>8</u>



# **Example 2 Block Diagram w/ Connections**



 $CUSTOM0.reconfig_from_xcvr[367:0] \Rightarrow RECONFIG0.reconfig_from_xcvr[367:0]$  $RECONFIG0.reconfig_to_xcvr[559:0] \Rightarrow CUSTOM0.reconfig_to_xcvr[559:0]$ 



### **Transceiver Reconfiguration Report**

| Table of Contents                   | 98 | Transceiver Reconfiguration Report |                       |                                               |
|-------------------------------------|----|------------------------------------|-----------------------|-----------------------------------------------|
| 📰 Flow Summary                      |    | Component                          | Туре                  | Instance Name                                 |
| Flow Settings                       |    | 1 🚊 reconfig nonbond 1phyip inst   |                       |                                               |
| Flow Non-Default Global Settings    |    | 1 🖃 Logical Interface 0            | REGULAR RX/TX Channel |                                               |
| Flow Elapsed Time                   |    | 1 Component Block                  | Channel               | rx_in[0]                                      |
| ·                                   |    | 2 Component Block                  | Channel               | tx_out[0]                                     |
| Flow OS Summary                     |    | 3 Component Block                  | AVMM                  | phyip_nonbonded4:phyip_nonbonded4_inst altera |
| 🗝 🖹 Flow Log                        |    | 2 🖃 Logical Interface 2            | REGULAR RX/TX Channel |                                               |
| 🗄 🧰 Analysis & Synthesis            |    | 1 Component Block                  | Channel               | rx_in[2]                                      |
| - 🔁 Fitter                          |    | 2 Component Block                  | Channel               | tx_out[2]                                     |
| Summary                             |    | 3 Component Block                  | AVMM                  | phyip_nonbonded4:phyip_nonbonded4_inst altera |
|                                     |    | 3 📃 Logical Interface 4            | CDR TX PLL            |                                               |
| 🎹 Settings                          |    | 1 Component Block                  | Channel               |                                               |
| ···· 🇱 Parallel Compilation         |    | 2 Component Block                  | AVMM                  | phyip_nonbonded4:phyip_nonbonded4_inst altera |
| I/O Assignment Warnings             |    | 4 🗇 Logical Interface 6            | CDR TX PLL            |                                               |
| Netlist Optimizations               |    | 1 ···· Component Block             | Channel               |                                               |
| Ignored Assignments                 |    | 2 Component Block                  | AVMM                  | phyip_nonbonded4:phyip_nonbonded4_inst altera |
|                                     |    | 5 🖃 Logical Interface 1            | REGULAR RX/TX Channel |                                               |
| 🗄 🛄 Incremental Compilation Section |    | 1 Component Block                  | Channel               | rx_in[1]                                      |
| \cdots 🕩 Pin-Out File               |    | 2 Component Block                  | Channel               | tx_out[1]                                     |
| 🖻 🔄 Resource Section                |    | 3 Component Block                  | AVMM                  | phyip_nonbonded4:phyip_nonbonded4_inst altera |
| Resource Usage Summary              |    | 6 📃 Logical Interface 3            | REGULAR RX/TX Channel |                                               |
| Partition Statistics                |    | 1 Component Block                  | Channel               | rx_in[3]                                      |
|                                     |    | 2 ···· Component Block             | Channel               | tx_out[3]                                     |
| ···· 🎹 Input Pins                   |    | 3 Component Block                  | AVMM                  | phyip_nonbonded4:phyip_nonbonded4_inst altera |
| ···· 🇮 Output Pins                  |    | 7 🖃 Logical Interface 5            | CDR TX PLL            |                                               |
| 🏭 I/O Bank Usage                    |    | 1 Component Block                  | Channel               |                                               |
|                                     |    | 2 Component Block                  | AVMM                  | phyip_nonbonded4:phyip_nonbonded4_inst altera |
|                                     |    | 8 🖹 Logical Interface 7            | CDR TX PLL            |                                               |
|                                     |    | 1 Component Block                  | Channel               |                                               |
| Transmitter Channel                 |    | 2 Component block                  | AVMM                  | phyip_nonbonded4:phyip_nonbonded4_inst altera |

| Logical Channel<br>Number | Channel Name                  |
|---------------------------|-------------------------------|
| 0                         | Channel 0                     |
| 1                         | Channel 1                     |
| 2                         | Channel 2                     |
| 3                         | Channel 3                     |
| 4, 5, 6, 7                | TX (CMU) PLL (Channels 0 – 3) |

Transmitter PLL

Resource Litilization by Entity

nuration Report

#### **Two PHY IP Cores with Non-Bonded Cores**

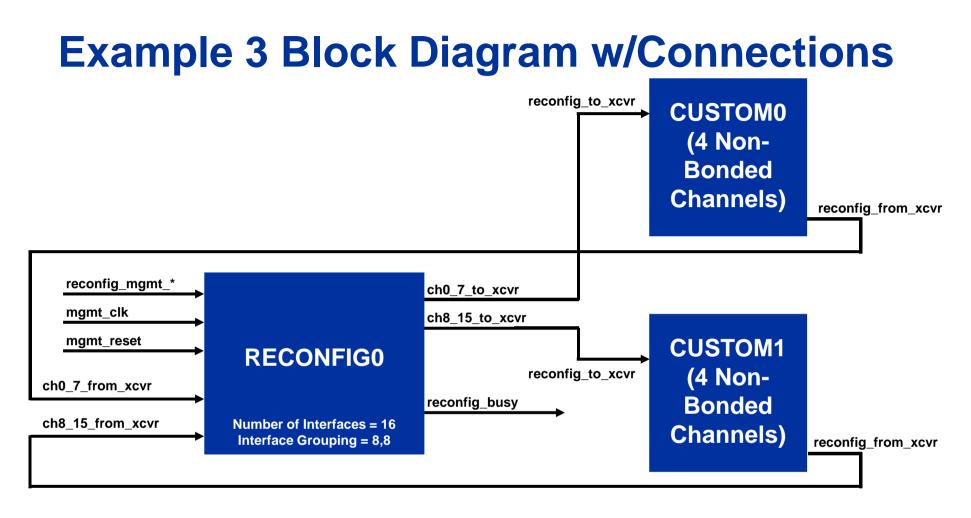
Two 4-channel Custom PHY IP core instances
One transceiver reconfiguration controller



# **Example 3 Setup**

#### **4-Channel Instance (CUSTOM0)**

- 1. Configure Custom PHY IP for 4 non-bonded, full-duplex channels
- 2. Enable reconfiguration features (if needed)
- 3. Note the number of reconfiguration interfaces in Messages window
  - 8 interfaces total
  - 0 3 : Transceiver channels
  - 4 7 : TX PLLs


#### **4-Channel Instance (CUSTOM1)**

- 1. Configure Custom PHY IP for 4 non-bonded, full-duplex channels
- 2. Enable reconfiguration features (if needed)
- 3. Note the number of reconfiguration interfaces in Messages window
  - 8 interfaces total
  - 0 3 : Transceiver channels
  - 4 7 : TX PLLs

#### **Reconfiguration Controller Instance (RECONFIG0)**

- 1. Configure transceiver reconfiguration controller
- 2. Enable reconfiguration features
- 3. Set number of reconfiguration interfaces to <u>16</u>
- 4. Set the grouping to <u>8,8</u>





CUSTOM0.reconfig\_from\_xcvr ⇒ RECONFIG0.ch0\_7\_from\_xcvr CUSTOM1.reconfig\_from\_xcvr ⇒ RECONFIG0.ch8\_15\_from\_xcvr RECONFIG0.ch0\_7\_to\_xcvr ⇒ CUSTOM0.reconfig\_to\_xcvr RECONFIG0.ch8\_15\_to\_xcvr ⇒ CUSTOM1.reconfig\_to\_xcvr



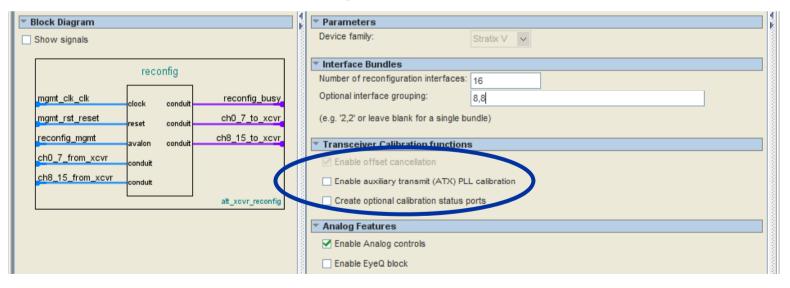
# Example 3 Logical Channel Number Assignments\*

| Logical Channel Number | Channel Name      |
|------------------------|-------------------|
| 0                      | CUSTOM0 Channel 0 |
| 1                      | CUSTOM0 Channel 1 |
| 2                      | CUSTOM0 Channel 2 |
| 3                      | CUSTOM0 Channel 3 |
| 8                      | CUSTOM1 Channel0  |
| 9                      | CUSTOM1 Channel1  |
| 10                     | CUSTOM1 Channel2  |
| 11                     | CUSTOM1 Channel3  |
| 4, 5, 6, 7             | CUSTOM0 CMU PLL   |
| 12,13,14,15            | CUSTOM1 CMU PLL   |

\* One possible solution



# Calibration


- Transceiver reconfiguration controller automatically initiates calibration at power-up
- Types of calibration
  - Offset cancellation
    - Compensates for p-n voltage offsets due to process variations
    - Required for all channels
  - ATX PLL calibration
    - Tunes Stratix V ATX PLL parameters
    - Required for all Stratix V designs using ATX PLL
    - May be rerun after power-up (e.g. PLL does not lock after power-up)



#### **Megafunction Settings for Calibration**

- Offset cancellation automatically enabled in controller megafunction
- Other calibration types/options must be enabled

#### Transceiver Reconfiguration Controller





# **Performing Calibration**

- 1. Upon power-up, transceiver reconfiguration controller initiates calibration
- 2. Embedded reset controller triggers reset when complete
- 3. Monitor *reconfig\_busy* output flag or *busy* register to determine when controller is done
- Monitor tx\_ready and rx\_ready signals to learn when channels are ready to send/receive data



# **PMA Reconfiguration**

Selects from thousands of transmit and receive PMA analog settings dynamically

#### Use to

- Improve signal integrity during in-system tests and debugging
  - Fine tune transmit/receive buffers according to specific board/system conditions
- Manually adjust settings to achieve target BER in FPGA or upstream device



# **Configurable PMA Settings**

- Output differential voltage (V<sub>OD</sub>)
- Pre-emphasis support
- Equalization
- Equalizer DC gain



| -        |
|----------|
|          |
|          |
|          |
|          |
|          |
| MegaCore |

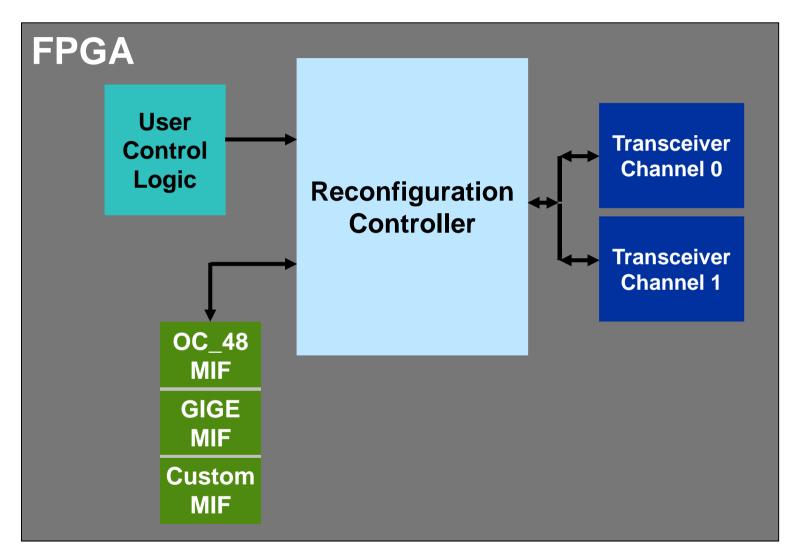
#### Transceiver Reconfiguration Controller

| Megacore att_xcvr_reconfig                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>D</u> ocumentation |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| ▼ Block Diagram                                                                                                                                                                                                                                                             | Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| Show signals                                                                                                                                                                                                                                                                | Device family: Stratix V V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| Show signals         import clk_clk       reconfig         mgmt_clk_clk       clock       conduit         reconfig_mgmt       avalon       conduit         ch0_7_from_xcvr       conduit       ch8_15_to_xcvr         ch8_15_from_xcvr       conduit       at_xcvr_reconfig | Interface Bundles         Number of reconfiguration interfaces:         [6]         Optional interface grouping:         8,8]         (e.g. '2,2' or leave blank for a single bundle) <b>Transceiver Calibration functions</b> Enable offset cancellation         Enable offset cancellation         Enable auxiliary transmit (         Enable auxiliary transmit (         Create optional calibration status ports         ✓ Analog Features         ✓ Enable Analog controls         Enable decision feedback equalizer (DFE) block         Enable adaptive equalization (AEQ) block         ▼ Reconfiguration Features         Enable channel/PLL reconfiguration         Enable PLL reconfiguration support block |                       |
|                                                                                                                                                                                                                                                                             | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ancel Finish          |
|                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |

\* B \_ D X

# **Memory Initialization File**

- Used during reconfiguration to store settings for a single transceiver channel and/or PLL
  - Stores a single transceiver state
  - To support multiple transceiver configurations, you must generate and store multiple MIFs
- Generated automatically by Quartus II Assembler based on transceiver PHY IP core settings
- For design implementation, configure transceiver IP core for each set of reconfiguration options and recompile
  - Each recompilation creates a reconfiguration MIF
  - For faster compile times, consider creating a simplified reference or template design
- Reconfigure channels by writing new MIF into channel




# **Using MIFs**

- Each MIF files has the settings for single or full duplex channel
  - Each MIF file is made up of 16-bit records (words)
    - Number of words determined by target device and target channel(s)
  - No limitation on the number of MIFs implemented in a single design
  - Single MIF can be used for reconfiguring multiple channels
- MIFs can be stored in embedded RAM or in off-chip memory
- Reconfiguration controller automatically accesses MIF records through MIF reconfiguration Avalon-MM master interface
- Reconfiguration controller writes MIF records into actual transceiver channel(s)



### **MIF Example**



Note: MIFs can be stored in single memory or separate memory spaces



# **Locating Generated MIFs**

- reconfig\_mif subdirectory created in project directory
- Separate MIF created for each transceiver IP instance and each TX PLLs referenced in those instances
- Default filenames based on the transceiver IP instance names
  - User can rename MIF



#### **Input Reference Clocks**

- PHY IP clock sources for TX PLLs and RX CDRs
- Transceiver megafunction supports up to 5 different input reference clocks when channel and PLL reconfiguration enabled
- Changing input reference clocks changes input clock frequency to PLLs and CRUs
  - Allows support for wider variety of data rates vs. changing PLL settings alone



#### More Details on Channel & PLL Reconfiguration

#### Online documentation

- Stratix V Device Handbook, Volume 3, Chapter 6: Dynamic Reconfiguration in Stratix V Devices
- Arria V Device Handbook, Volume 3, Chapter 7: Dynamic Reconfiguration in Arria V Devices
- Altera Transceiver PHY IP Core User Guide



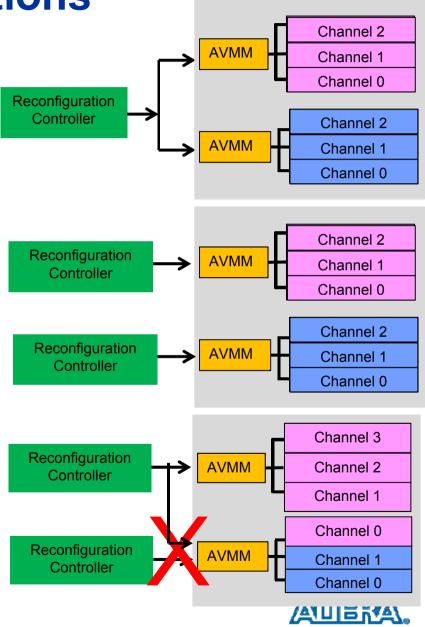
# **Connection Considerations**

- Stratix V supports one Avalon interface per triplet
  - Two AVMM per six-pack
- AVMM interface needs to be taken into account when planning the Reconfiguration Controller connections





# **Connection Considerations**



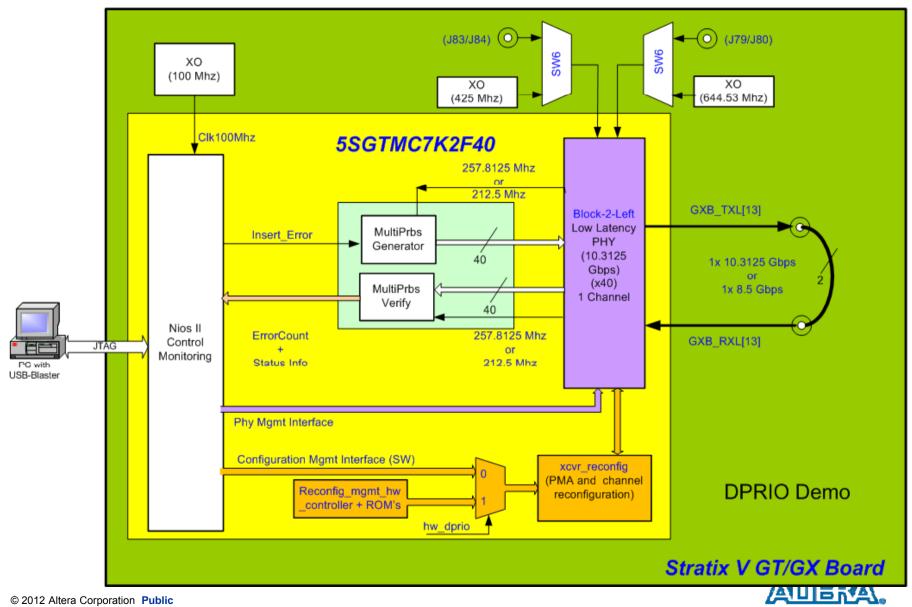

Do use one Reconfiguration
 Controller to control both AVMM interfaces within a 6-pack

OR

Do use one Reconfiguration
 Controller per AVMM interface

 Bad
 Do not use Two Reconfiguration Controller to connect to the same AVMM interface




#### DPRIO Demo Design using MIF Streamer Mode 0 V12.0.0 For the Stratix V GX SI Board Dynamically reconfigure between 2 datarates

Peter Schepers Staff Technology Specialist FAE High Speed Interfaces June 28<sup>th</sup> , 2012



© 2012 Altera Corporation—Public

# **Blockdiagram**



#### **Transceiver Configuration 1st datarate (General Tab)**

| K Low Latency PHY - > | cvr_1Ch_Lov                                                                                | v_Latend                                                                                        | ty_10Gbps                                                                                                                                     | _ | -                                                                                                                                | 1 4 5                                                                                                  | 14.1 | 100///FFFD-3940                                                                                                   |
|-----------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------|
|                       | tency Pl<br>_low_latency                                                                   |                                                                                                 |                                                                                                                                               |   |                                                                                                                                  |                                                                                                        |      |                                                                                                                   |
| Block Diagram         |                                                                                            |                                                                                                 |                                                                                                                                               |   | General                                                                                                                          | Additional Options                                                                                     | Reco | nfiguration Analog Options                                                                                        |
| Show signals          | 1Ch_Low_<br>clock<br>reset<br>avalon<br>eleels<br>conduit<br>conduit<br>conduit<br>conduit | Latenc)<br>conduit<br>conduit<br>conduit<br>conduit<br>conduit<br>conduit<br>conduit<br>conduit | tx_ready<br>rx_ready<br>pll_locked<br>tx_serial_data<br>rx_is_lockedtoref<br>rx_is_lockedtodata<br>tx_clkout<br>rx_clkout<br>rx_parallel_data |   | Device fan<br>Data path t<br>Mode of op<br>Number of<br>Enable<br>FPGA fabr<br>PCS-PMA i<br>PLL type:<br>Data rate:<br>Base data | nily:<br>type:<br>peration:<br>lanes:<br>lane bonding<br>ric transceiver interface<br>interface width: | 1    | Stratix V<br>10G V<br>Duplex V<br>1<br>40 V<br>40 V<br>CMU V<br>10312.5 Mbps<br>10312.5 Mbps V<br>644.53125 MHz V |
|                       |                                                                                            |                                                                                                 |                                                                                                                                               |   |                                                                                                                                  |                                                                                                        |      |                                                                                                                   |



#### **Transceiver Configuration 1st Datarate (Reconfiguration Tab)**

|   | κ.ι  | Low Latency PHY - xcvr_1Ch_Low_Latency_10Gbps |                             |                                                           |  |  |  |  |  |
|---|------|-----------------------------------------------|-----------------------------|-----------------------------------------------------------|--|--|--|--|--|
|   | Mege | Low Latency PH<br>altera_xcvr_low_latency_    |                             |                                                           |  |  |  |  |  |
| I | T E  | llock Diagram                                 |                             | General Additional Options Reconfiguration Analog Options |  |  |  |  |  |
| I |      | Show signals                                  |                             | PLL Reconfiguration                                       |  |  |  |  |  |
|   |      | xcvr_1Ch_Low_L                                | _atency_10Gbps              | Allow PLL/CDR Reconfiguration Number of TX PLLs:          |  |  |  |  |  |
| I |      | phy_mgmt_clk                                  | conduit tx_ready            | Number of reference clocks: 2 🗸                           |  |  |  |  |  |
| I |      | phy_mgmt_clk_reset reset                      | conduitready                | Main TX PLL logical index: 0                              |  |  |  |  |  |
| I |      | phy_mgmtavalon                                | conduitpll_locked           | CDR PLL input clock source: 0 🗸                           |  |  |  |  |  |
| I |      | pll_ref_clkclock                              | conduittx_serial_data_      | TX PLL 0                                                  |  |  |  |  |  |
|   |      | rx_serial_data                                | conduitrx_is_lockedtoref    | PLL type: CMU 🗸                                           |  |  |  |  |  |
| I |      | tx_coreclkinconduit                           | conduitrx_is_lockedtodata   | PLL base data rate: 10312.5 Mbps                          |  |  |  |  |  |
| I |      | rx_coreclkin                                  | conduittx_clkout            | Reference clock frequency: 644.53125 MHz V                |  |  |  |  |  |
| I |      | tx_parallel_dataconduit                       | conduitrx_clkout            | Selected reference clock source: 0 V                      |  |  |  |  |  |
| l |      | reconfig_to_xcvr                              | conduit rx_parallel_data    | Channel Interface                                         |  |  |  |  |  |
|   |      |                                               | conduit reconfig_from_xcvr  | Enable Channel Interface                                  |  |  |  |  |  |
|   |      |                                               | altera_xcvr_low_latency_phy |                                                           |  |  |  |  |  |

- "Allow PLL Reconfiguration" must be checked
- As 2 input reference clocks will be used the number of input clocks should be set to '2'.
- For the first datarate the reference clock with index 0 will be used for both the Tx as the Rx

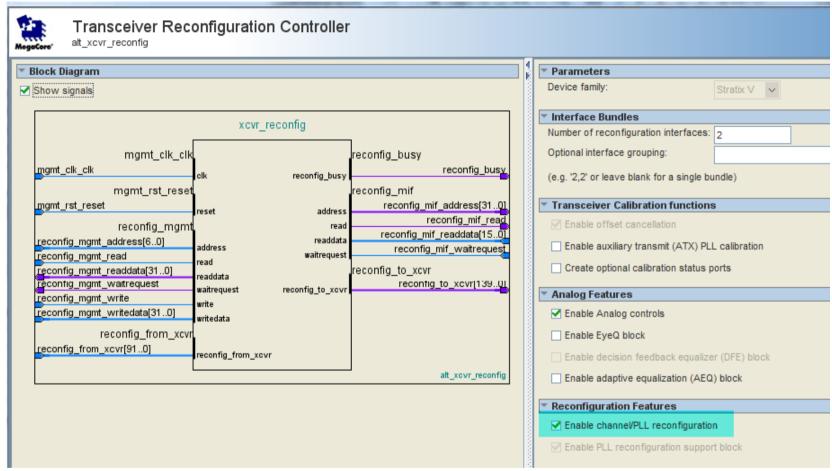


#### **Transceiver Configuration 2<sup>nd</sup> datarate (General Tab)**

| Ĩ | × Lo | ow Latency PHY - xcvr_1 | .Ch_Lov                                                                       | v_Latenc                                                                                                  | ry_8Gbps                                   | _ | WEADARA-DIT                                                                                                                                                                                                                                                                                                                                                                                                                | 17 |
|---|------|-------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | Mega | Low Laten               |                                                                               |                                                                                                           |                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|   | T B  | Block Diagram           |                                                                               |                                                                                                           |                                            |   | General Additional Options Reconfiguration Analog Options                                                                                                                                                                                                                                                                                                                                                                  | 1  |
|   |      | Show signals            | clock<br>reset<br>avalon<br>clock<br>conduit<br>conduit<br>conduit<br>conduit | Latenc<br>conduit<br>conduit<br>conduit<br>conduit<br>conduit<br>conduit<br>conduit<br>conduit<br>conduit | tx_clkout<br>rx_clkout<br>rx_parallel_data |   | General Additional Options Reconfiguration Analog Options         Device family:         Data path type:         Mode of operation:         Number of lanes:         1         Enable lane bonding         FPGA fabric transceiver interface width:         40          PCS-PMA interface width:         40          PLL type:         Data rate:         Base data rate:         Input clock frequency:         425.0 MHz |    |
|   |      |                         |                                                                               |                                                                                                           | altera_xcvr_low_latency_phy                |   |                                                                                                                                                                                                                                                                                                                                                                                                                            |    |

• The 2<sup>nd</sup> datarate is 8.5 Gbps from a 425 Mhz reference clock

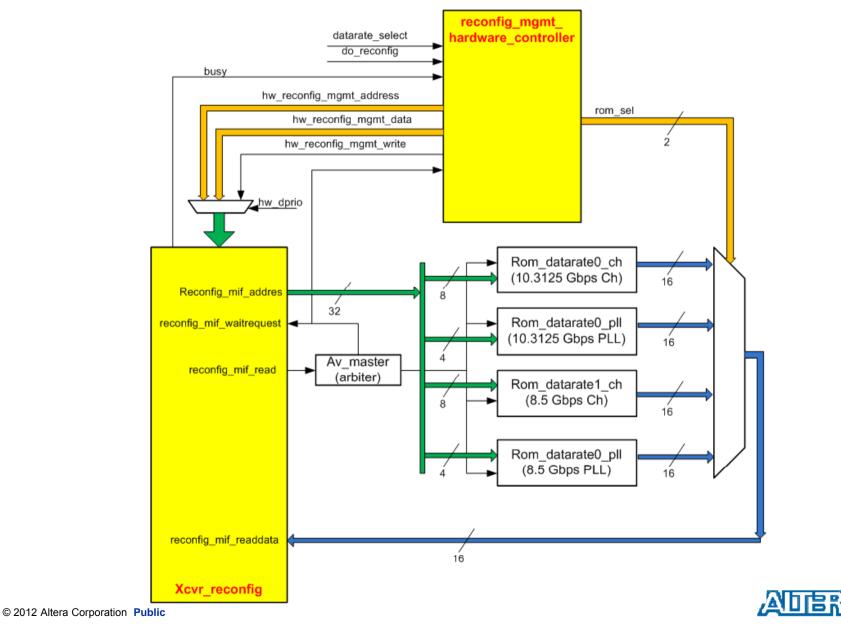



#### **Transceiver Configuration 2nd Datarate (Reconfiguration Tab)**

| 1 | 🕆 Low Latency PHY - xcvr_1Ch_Low_Latency_8Gbps |                                                           |  |  |  |  |  |  |  |  |
|---|------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|--|--|
|   | Low Latency PHY<br>altera_xcvr_low_latency_phy |                                                           |  |  |  |  |  |  |  |  |
|   | T Block Diagram                                | General Additional Options Reconfiguration Analog Options |  |  |  |  |  |  |  |  |
|   | Show signals                                   | PLL Reconfiguration                                       |  |  |  |  |  |  |  |  |
|   | xcvr_1Ch_Low_Latency_8Gbps                     | Allow PLL/CDR Reconfiguration Number of TX PLLs:          |  |  |  |  |  |  |  |  |
|   | phy_mgmt_clk                                   | Number of reference clocks: 2 V                           |  |  |  |  |  |  |  |  |
|   | phy_mgmt_clk_reset conduit rx_ready            | Main TX PLL logical index:                                |  |  |  |  |  |  |  |  |
|   | phy_mgmtavalon conduitpll_locked               | CDR PLL input clock source:                               |  |  |  |  |  |  |  |  |
|   | pll_ref_clk                                    | TX PLL 0                                                  |  |  |  |  |  |  |  |  |
|   | rx_serial_data                                 | PLL type: CMU 🗸                                           |  |  |  |  |  |  |  |  |
| I | tx_coreclkinconduitrx_is_lockedtodata          | PLL base data rate: 8500 Mbps                             |  |  |  |  |  |  |  |  |
| I | rx_coreclkin conduit conduit tx_clkout         | Reference clock frequency: 425.0 MHz V                    |  |  |  |  |  |  |  |  |
|   | tx_parallel_dataconduitrx_clkout               | Selected reference clock source: 1                        |  |  |  |  |  |  |  |  |
|   | reconfig_to_xcvrconduitrx_parallel_data        |                                                           |  |  |  |  |  |  |  |  |
| J | <sub>conduit</sub> <u>reconfig_from_xcvr_</u>  | Channel Interface Enable Channel Interface                |  |  |  |  |  |  |  |  |
|   | altera_xovr_low_latency_phy                    |                                                           |  |  |  |  |  |  |  |  |
|   |                                                |                                                           |  |  |  |  |  |  |  |  |
|   |                                                |                                                           |  |  |  |  |  |  |  |  |

- Note that the TX PLL will be reconfigured in this example so there is only one TX PLL Logical Index
- For the first datarate the reference clock with index 1 will be used for both the Tx as the Rx (Input clock source)




#### **Reconfiguration Controller**



 "Enable channel/PLL reconfiguration support block" must be checked (This will enable the reconfig\_mif interface in the reconfiguration controller).



#### **Reconfiguration Hardware Controller (Blockdiagram)**

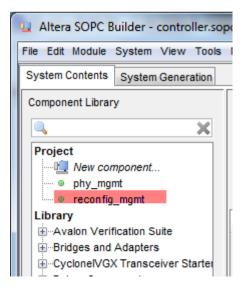


#### **Reconfiguration Hardware Controller (Description)**

- The Reconfiguration\_Hardware\_Controller Instance is a module which controls the reconfiguration controller (xcvr\_reconfig) module through a HW statemachine (see further).
- Since there are 2 datarates being used there are in total 4 MIF files required : 2 for each datarate : one for the Channel (Tx/Rx) and one for the PLL.
- These MIF files are automatically generated during the compilation.
- In order to generate the MIF files for the 2<sup>nd</sup> datarate one needs to instantiate the 2<sup>nd</sup> datarate PHY instead of the 1<sup>st</sup> one and recompile the design (alternatively one can also use a dummy design which only instantiates the PHY and the reconfiguration controller using the same pinouts as the final design).
- The MIF files are stored in the ROM as indicated in the blockdiagram and a small arbiter (av\_master) controls the accesses to the ROM's and generates the reconfig\_mif\_waitrequest signal accordingly.
- There is a MUX after the ROM's which will select the proper mif\_readdata to feed it back to the reconfiguration controller.



#### **Phy Management Interface.**


- The Stratix V PHY instance has a Phy Management Interface which is used to control the resets and the serial loopback.
- This PHY Management Interface is an Avalon MM Interface.
- This design is using a QSYS system which transparently maps an Avalon MM interface to the PHY Management Interface of the PHY.
- The component created for this in QSYS is called "phy\_mgmt" and the phy\_mgmt\_hw.tcl file included in the project describes it's implementation.
- You can verify it's content by editing the phy\_mgmt component.

| Altera SOPC Builder - controller. | sop |  |  |  |  |
|-----------------------------------|-----|--|--|--|--|
| File Edit Module System View Too  | ols |  |  |  |  |
| System Contents System Generation |     |  |  |  |  |
| Component Library                 |     |  |  |  |  |
| 🔍 🗙                               |     |  |  |  |  |
| Project                           | 1   |  |  |  |  |
| New component                     |     |  |  |  |  |
| phy_mgmt                          |     |  |  |  |  |
| ····· • reconfig_mgmt             |     |  |  |  |  |
| Library                           |     |  |  |  |  |
| Avalon Verification Suite         |     |  |  |  |  |
| ⊕ Bridges and Adapters            |     |  |  |  |  |
| CyclonelVGX Transceiver Starte    |     |  |  |  |  |



#### **Reconfig Management Interface.**

- The transceiver reconfiguration controller also has an Avalon MM Interface which is used to control the PMA settings of the transceivers the reconfiguration controller is connected to.
- Similar to the Phy Management Interface this design is also using the QSYS system which transparently maps another Avalon MM interface to the Reconfiguration Management Interface of the reconfiguration controller.
- The component created for this in QSYS is called "reconfig\_mgmt" and the reconfig\_mgmt\_hw.tcl file included in the project describes it's implementation.
- You can verify it's content by editing the reconfig\_mgmt component.



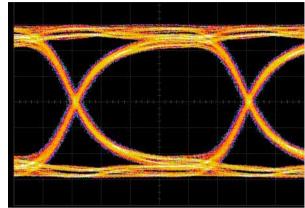


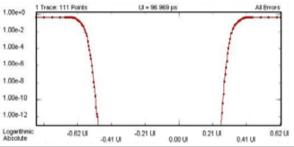
#### Nios 2 Output in Nios II SDK Shell

| Stratix V Dynamic Datarate switching design using 1 Ch                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0:GXB_RXTX[13] SMA PRBS-23 Bitrate 8499 Mbps                                                                                                                                                                                                   |
| Channel :/0 <br>                                                                                                                                                                                                                               |
| PowerDown : 0<br>Rev. Serial Loop :<br>Rev. Parallel Loop :<br>Serial Loop : 0<br>PLLLocked : 1<br>FreqLocked : 1<br>PrbsLocked : 1<br>Errorcount : 0                                                                                          |
| BER (CL=0.95) Ch 0 : 2.687959e-11                                                                                                                                                                                                              |
| Test Time: Øh Øm 13sReference Clock Ø Frequency: 644525 kHzReference Clock 1 Frequency: 424995 kHzIxCoreClk Frequency: 212497 kHzRxCoreClk Frequency: 212497 kHzSelected Reference clock: 1Select Action ::=================================== |
| Enter Choice :                                                                                                                                                                                                                                 |



## Signal Conditioning and Best Practices for Link Tuning


**Peter Schepers** 




© 2012 Altera Corporation—Public

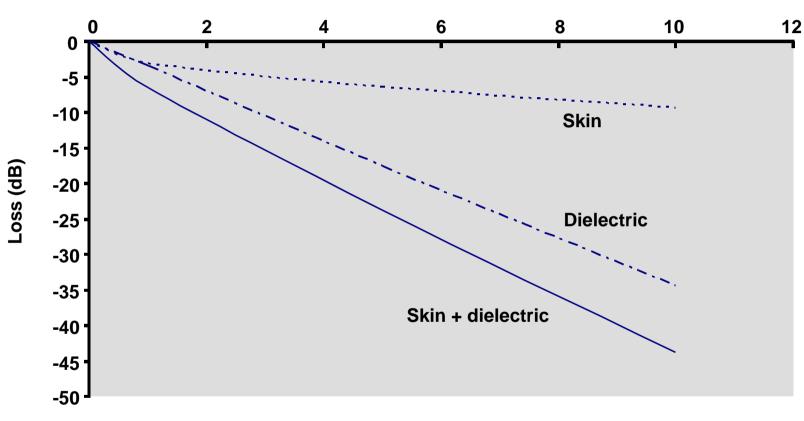
## Signal Integrity Challenge at 10 Gbps and beyond

- Shrinking Margins
  - 1 UI = 80 ps @ 12.5 Gbps !
  - 1 UI = 35 ps @ 28 Gbps !!
- BER targets more stringent
  - Interlaken, CEI-11G, SFI-5.2, SFI-S : **1E-15**
- Tighter skew requirements
  - SFI-S requires skew of 5.5 UI at Tx
- Need to drive backplanes





| Specification | Data Rate          | Reach                      | BER     |  |
|---------------|--------------------|----------------------------|---------|--|
| 10GBASE-KR    | 10.3125Gbps        | 1m (39") + 2<br>connectors | < 1E-12 |  |
| CEI-11G-LR    | EI-11G-LR 11.1Gbps |                            | <1E-15  |  |

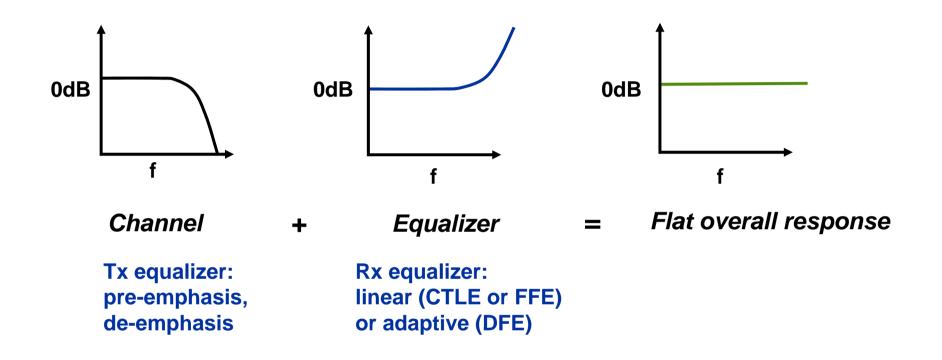



#### **Backplane Challenges - Transceivers**

- The burden is on the transceivers driving these backplanes to compensate all of the above described effects
- Altera Stratix V Transceivers provide different equalization tools to compensate backplane non-idealities
  - TX Finite Impulse Response(FIR) or Pre emphasis/de emphasis
  - Continuous time linear equalizer (CTLE) on the Rx side
  - Decision feedback Equalizer(DFE) on the Rx side



#### **Physics for Electrical Channel Loss**

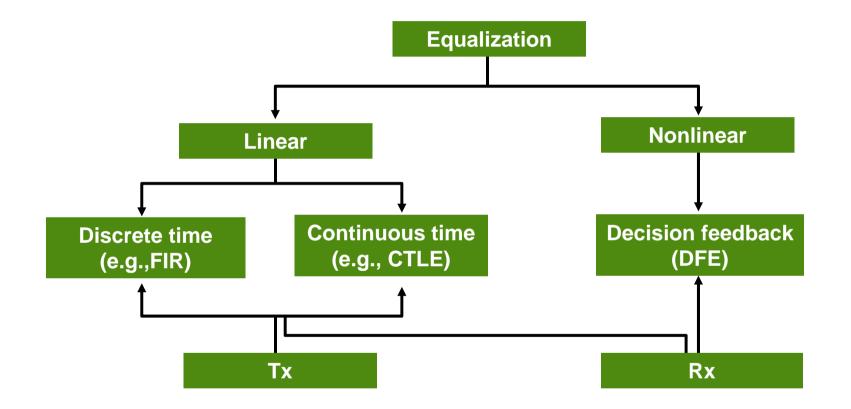



**Electrical loss function** 

Frequency (GHz)

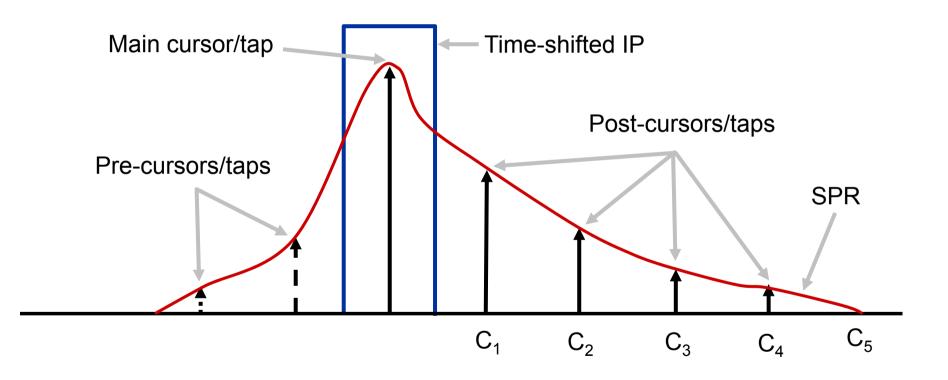


#### **Mechanisms for Equalization**




Make the lossy channel a non-lossy channel so the overall "effective channel" is an "all-pass" function or has a flat response

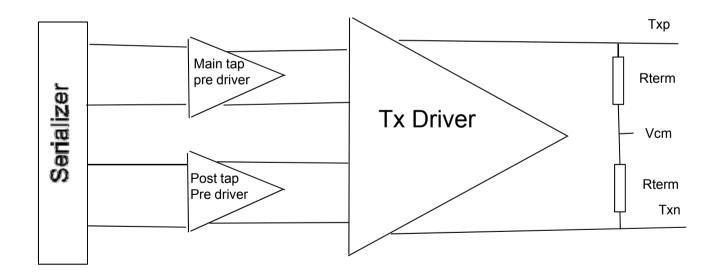



© 2012 Altera Corporation Public

#### **Equalization Architecture Overview**





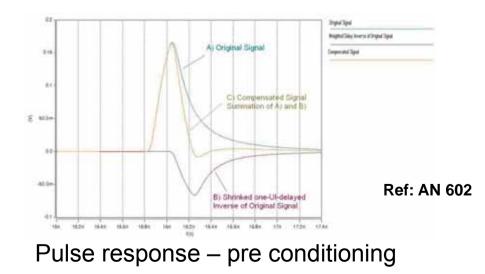

# Ideal Pulse (IP), Single Pulse Response (SPR), and DFE Tap Coefficients





### **Transmitter (Tx) Buffer**

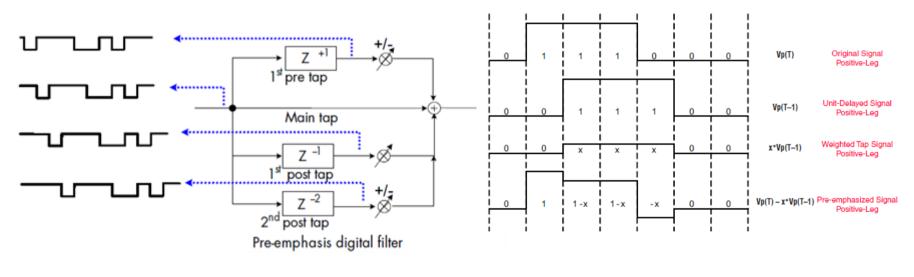
- Altera Stratix V Transmit buffer drives pair of differential signals through a pair of 50ohm impedance
- Tx offers programmable drive strength, pre emphasis and common mode voltage for enhanced signaling




Tx Buffer Structure



#### **Tx Pre/de emphasis**


- When signal travelling through a lossy (insertion loss) back plane, the transition expands to adjacent intervals, creating Inter symbol interference(ISI)
- Tx signal can be pre distorted(emphasis) so that after it goes through backplane, resulting signal is cleaner for Rx
- In general, two ways of pre conditioning the signal
  - Amplify high frequency contents  $\rightarrow$  Pre-emphasis
  - Reduce low frequency contents  $\rightarrow$  De-emphasis



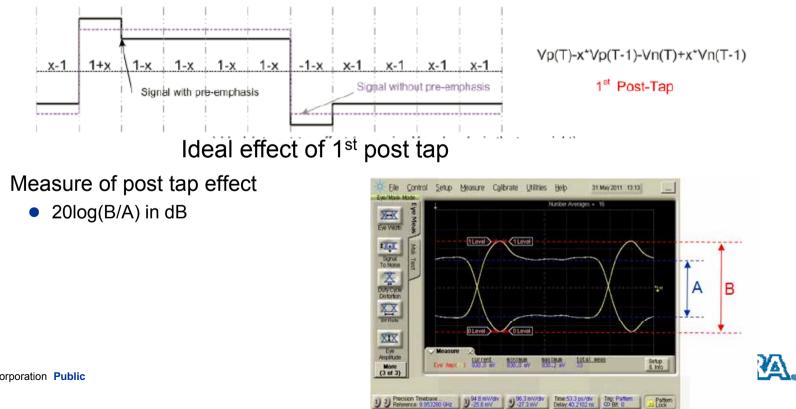


#### Tx Pre/de emphasis contd..

- Altera Stratix V devices provide one pre-tap to address pre cursor(before transition of bit) ISI and two post taps to compensate post cursor(after transition of bit) ISI
  - This is accomplished by taking delayed ( $z^{-1}$  → Tx(n-1)) version of transmit data and adding its weighted value to the actual data



Tx Pre/de emphasis


Effect of pre emphasis

Ref: AN 602



#### Tx 1<sup>st</sup> post tap effect

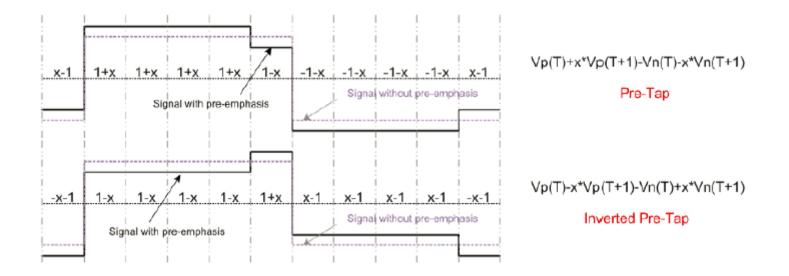
- 1<sup>st</sup> post tap is most effective tap
  - It emphasizes bit period immediately after transition and de emphasizes remaining bits
  - The emphasis part is not as significant as de emphasis part
  - De emphasis reduces vod level and minimizing signal power
  - Only positive polarity for first post tap



#### Tx 1<sup>st</sup> post tap effect

#### Stratix V 1<sup>st</sup> post tap effect in dB

– Note that pre emphasis is not very significant until the setting of 15

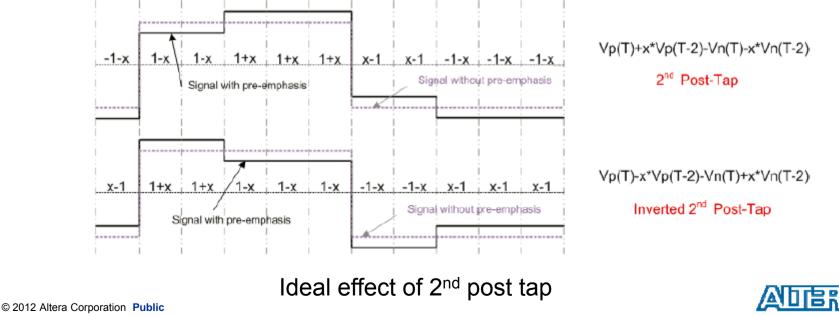

| 1stPostTap | A      |        | dB    |   | _1stPostTap | Α      | <b>B</b> | dB   |
|------------|--------|--------|-------|---|-------------|--------|----------|------|
| (mA)       | (mV)   | (mV)   |       |   | (mA)        | (mV)   | (mV)     |      |
| 0          | 1.0124 | 0.7996 | -2.05 |   | 3.2         | 0.7781 | 0.8462   | 0.73 |
| 0.2        | 0.9834 | 0.7807 | -2.00 |   | 3.4         | 0.7456 | 0.8338   | 0.97 |
| 0.4        | 0.9682 | 0.7844 | -1.83 |   | 3.6         | 0.7317 | 0.8411   | 1.21 |
| 0.6        | 0.9556 | 0.7866 | -1.69 |   | 3.8         | 0.7192 | 0.8484   | 1.44 |
| 0.8        | 0.9438 | 0.7912 | -1.53 |   | 4           | 0.7068 | 0.8562   | 1.67 |
| 1          | 0.9308 | 0.7974 | -1.34 |   | 4.2         | 0.6854 | 0.8520   | 1.89 |
| 1.2        | 0.9179 | 0.8018 | -1.17 |   | 4.4         | 0.6845 | 0.8748   | 2.13 |
| 1.4        | 0.905  | 0.8063 | -1.00 |   | 4.6         | 0.6697 | 0.8809   | 2.38 |
| 1.6        | 0.8975 | 0.8135 | -0.85 |   | 4.8         | 0.6560 | 0.8816   | 2.57 |
| 1.8        | 0.8654 | 0.8006 | -0.68 |   | 5           | 0.6291 | 0.885    | 2.96 |
| 2          | 0.8523 | 0.8049 | -0.50 |   | 5.2         | 0.6087 | 0.8813   | 3.21 |
| 2.2        | 0.8379 | 0.8115 | -0.28 |   | 5.4         | 0.5968 | 0.8917   | 3.49 |
| 2.4        | 0.8264 | 0.8183 | -0.09 |   | 5.6         | 0.5851 | 0.8974   | 3.72 |
| 2.6        | 0.8113 | 0.8244 | 0.14  | ] | 5.8         | 0.5802 | 0.92     | 4.00 |
| 2.8        | 0.8001 | 0.8321 | 0.34  |   | 6           | 0.5693 | 0.93     | 4.26 |
| 3          | 0.7865 | 0.8386 | 0.56  | 1 | 6.2         | 0.5574 | 0.9366   | 4.51 |



#### Tx pre tap effect

The pre tap de emphasizes bit before transition and emphasizes remaining bits

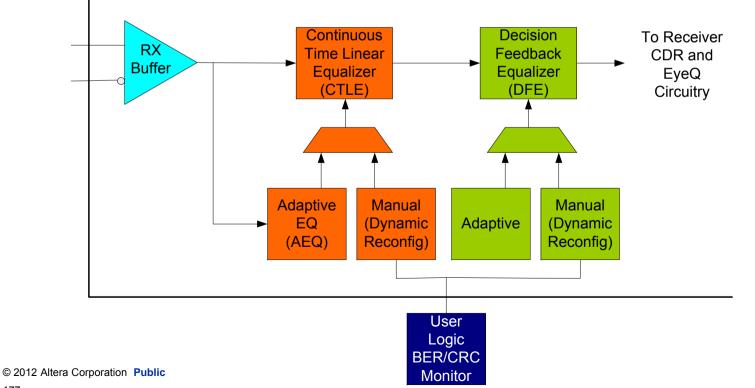
- Negative polarity of pre tap does the opposite effect
- Stratix V Tx buffer has +/-15 pre tap values
  - Pre tap has range of -1db to 2db




Ideal effect of pre tap



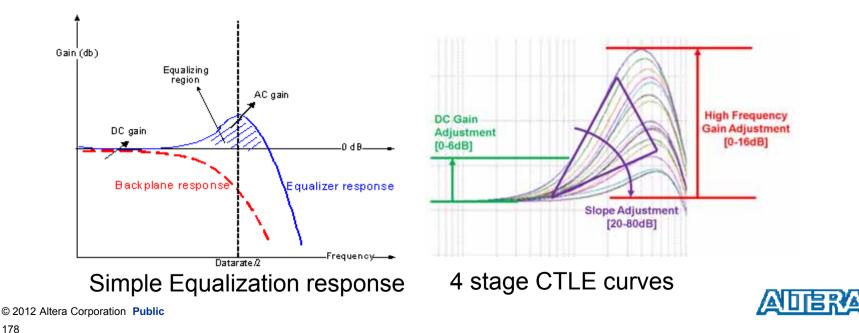
#### Tx 2<sup>nd</sup> post tap effect


- 2<sup>nd</sup> post tap de emphasizes first two bits after transition and emphasizes remaining bits
  - Negative polarity does the opposite effect
  - Stratix V has +/-15 2nd post tap values
    - 2nd post tap has less effect relatively, it has range of 0.8db to 1.5db



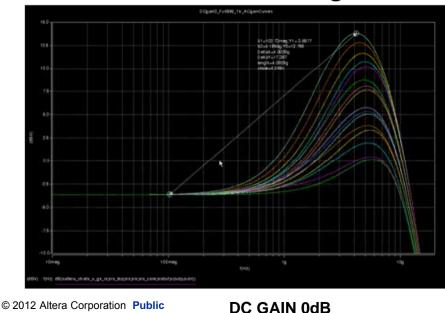
#### **Receiver Equalization**

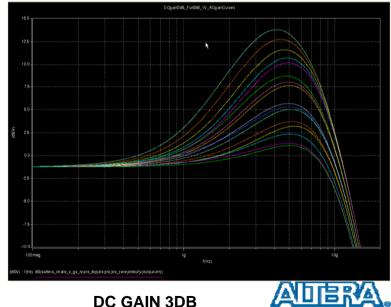
#### Stratix V receivers feature the following two types of equalizers


- Continuous Time Linear Equalizer (CTLE)
- Decision Feedback Equalizer (DFE) \_\_\_\_






#### **Rx Equalizer/CTLE**


- The equalizer boosts high frequency components and compensates backplane loss
- The goal of equalizer is able to fit/compensate different backplane losses
  - Based on analysis of different backplanes at 10.3Gbps, Stratix V 4 stage \_ Rx Equalizer is designed



### **Rx Equalizer/CTLE**

- Rx Equalizer has programmable controls on
  - DC Gain boost up to 12dB and serves as variable Gain amplifier
  - Slope adjustment up to 80db/dec with 4 stages
  - High frequency gain adjustment up to 16db
    - With out enabling of any stages, there is still AC gain of ~5dB for Equalizer
  - Bandwidth adjustment for 6.25Gbps and 12.5Gbps
- Stratix V default DC gain is changed to 3dB

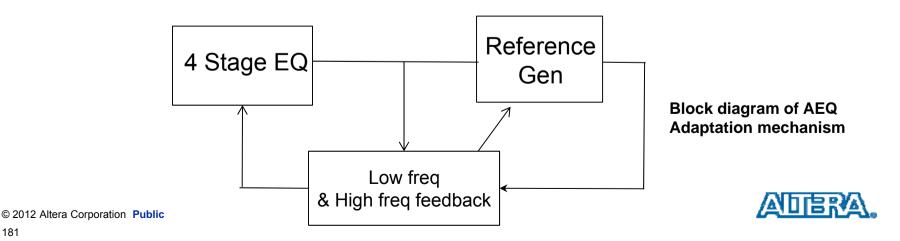




## **Adaptive Equalization (AEQ)**

 In order to tune CTLE to fit to many of different customer backplanes and to avoid manual selection of ~240 settings on CTLE, Adaptive engine is required

#### Modes of AEQ

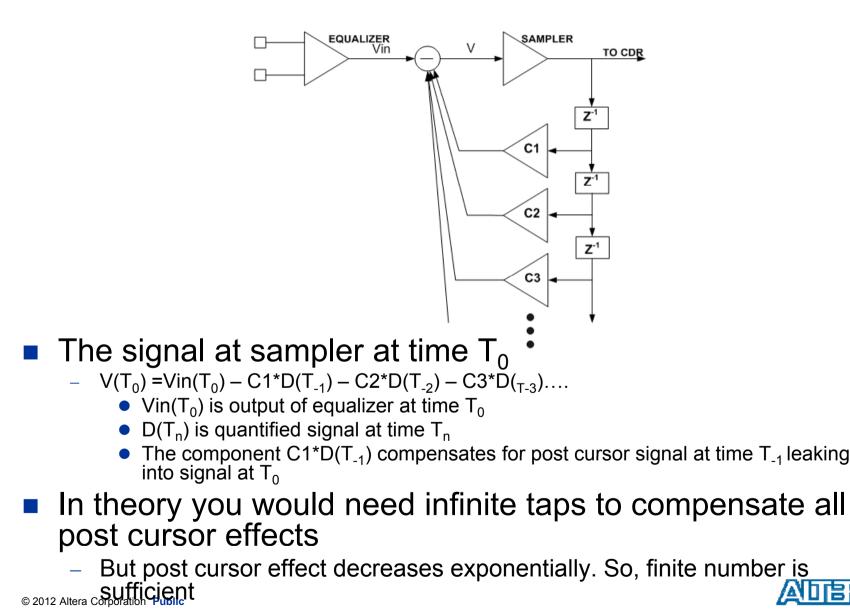

- Continuous adaptation
  - Continuously adjusting 4stage equalizer settings based on input data
- One time Adaptation
  - Adapts 4 stage EQ settings and freezes those values. Low power consumption
- Manual
  - User picks one of 16 available AC settings and DC settings.



## **Adaptive Equalization (AEQ)**

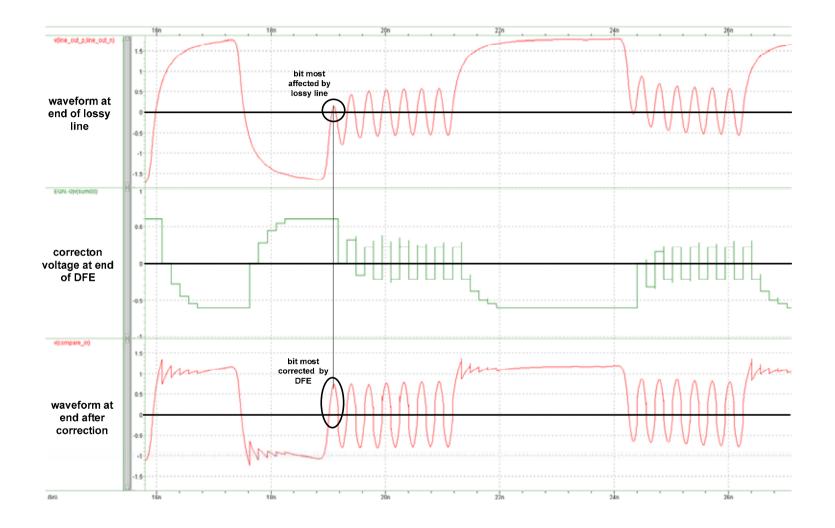
#### Continuous Adaptation

- The low frequency content and high frequency content of reference edge generator and equalizer are matched in a feed back mechanism
  - Low frequency and high frequency content are extracted using low pass and high pass filters
- Adaptation done signal goes high after matching of signals frequency content

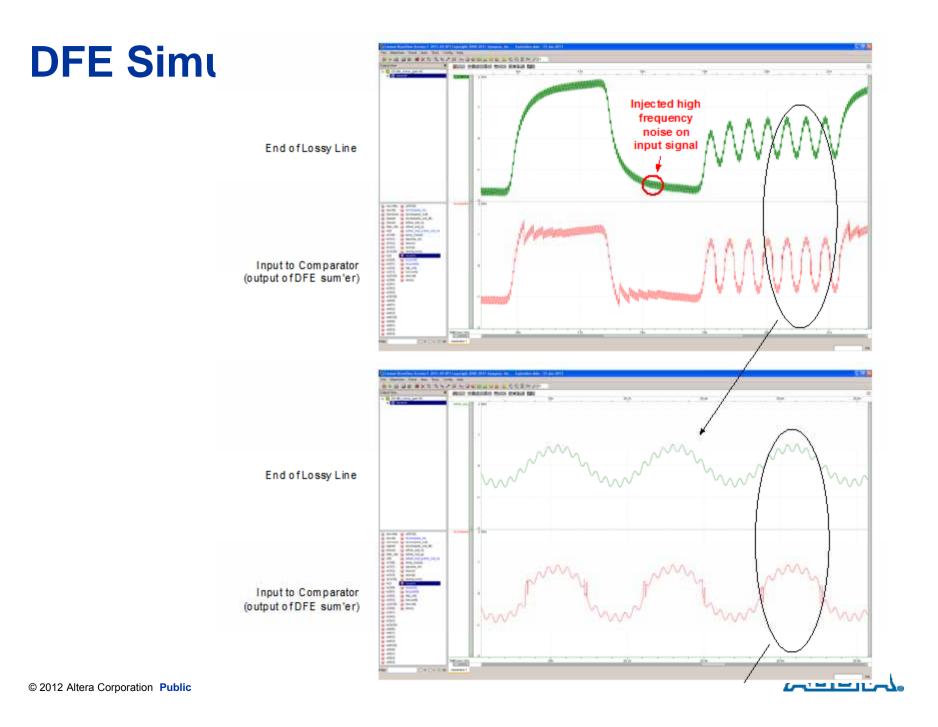


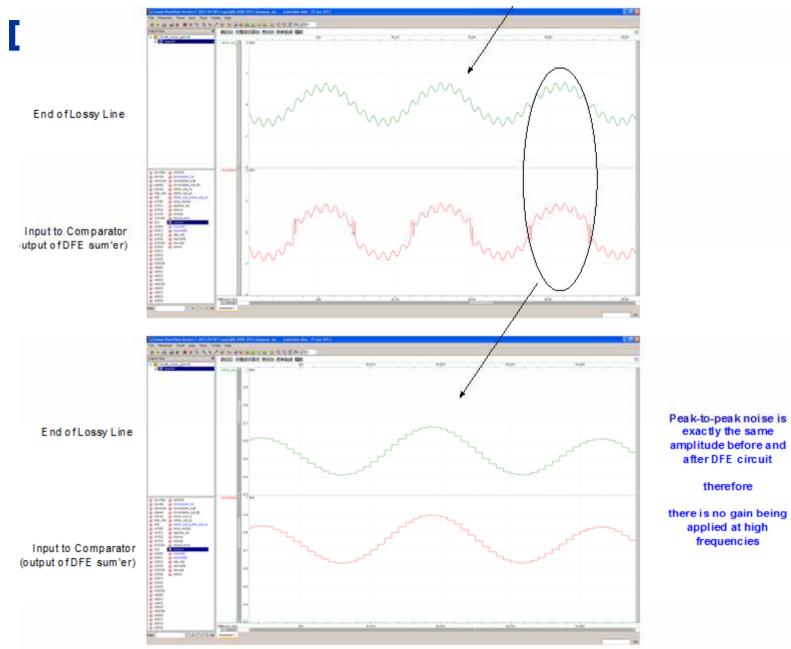

## **Decision feedback Equalization (DFE)**

- DFE is non linear system of equalization
- DFE works by actively shifting the incoming signal based on history of received data
- DFE removes signal energy that leak from one bit to the following bit.
  - DFE effectively cancels out post cursor ISI.
- The advantage of DFE is to boost the power of high frequency component of received data with out increasing noise power




#### **Basic DFE structure**





DISS

#### **DFE Simulation**









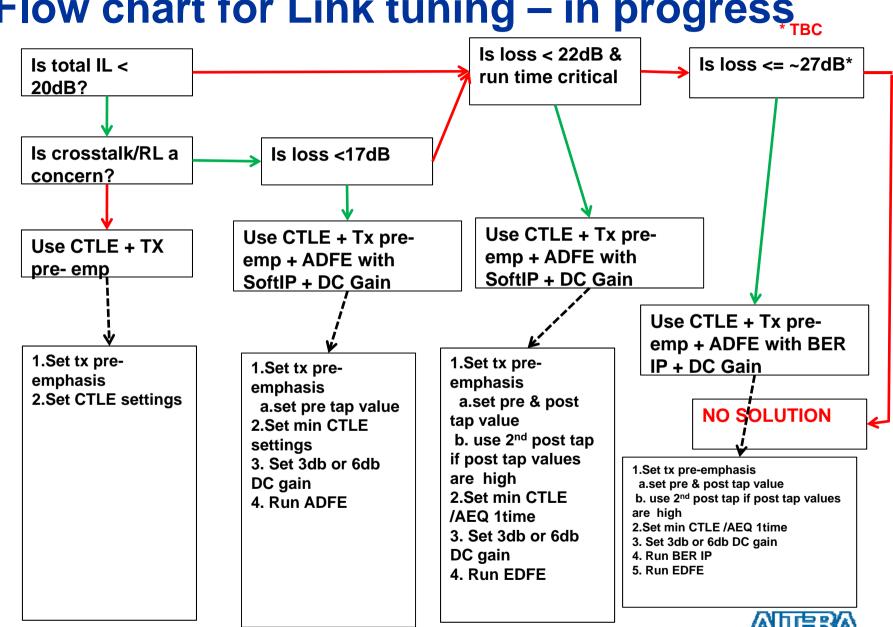
© 2012 Altera Corporation Public

## Link tuning – Tx pre emphasis role

- As backplane loss reduces high frequency content, a positive 1<sup>st</sup> post tap and negative pre tap boosts high frequency content
  - Also improves rise/fall times of Tx buffer output data
- Using Tx Pre emphasis with DFE
  - DFE compensates for post cursor ISI effects, so negative pre tap is required to offset pre cursor effects of ISI
  - High values of 1<sup>st</sup> post tap and negative pre tap reduces Vod level of bits after transition. DFE need comfortable level of eye envelope. So, positive second post tap should be used where losses are high(in addition to 1<sup>st</sup> post tap and –ve pre tap)
  - DFE require a launch voltage of 800mv to 1000mv(corresponds to ~40 to 50 on Tx Vod setting)
- The only disadvantage of Tx pre emphasis is in systems with high coupling, cross talk amount would be increased
  - Because high frequency content on signals is increased with pre emphasis
  - In other words, if cross talk is not major concern, Tx pre emphasis is very effective

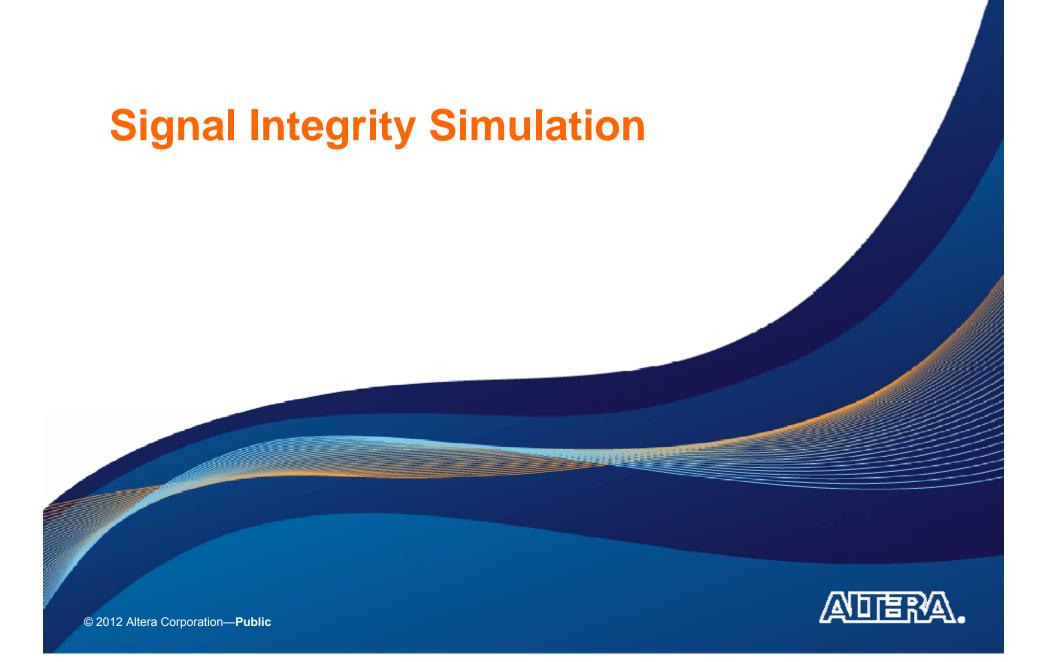


### Link Tuning & Rx Equalization


- Rx Equalization is well suited for real time adaptation and equalized signal is readily available for Rx
  - Use Rx equalizer when backplane loss is less than 17db
- In case tighter power requirements, use either one time adaptation or Manual CTLE
  - Disadvantage of these modes is the performance impact with VT changes
  - Use adaptive mode or provide enough margin to overcome this disadvantage
- CTLE can boost high frequency noise in addition to signal content – poor signal to noise ratio
  - In multi lane systems with high cross talk, use lower CTLE settings in order not to amplify noise/crosstalk
- If backplane loss is high and cross talk is high, DFE is better choice of equalization

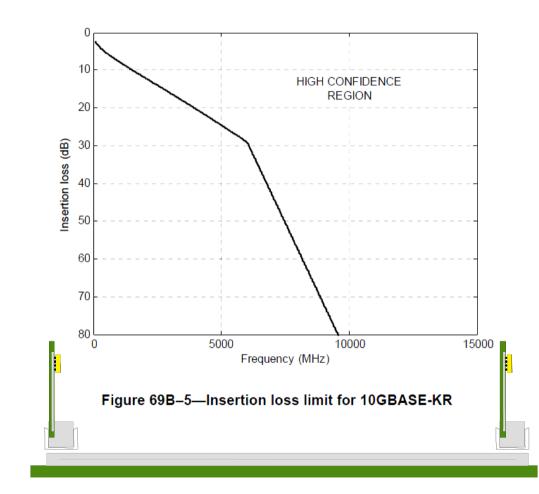


## Link Tuning & DFE


- DFE is well suited in systems with high cross talk/high reflections
  - Use higher DC gain to use less equalizer values and more DFE (better SNR )
- Use DFE + CTLE if total loss of system is above 20dB
  - Recommended mode of operation
    - continuous AEQ + one time/Manual DFE
    - One time AEQ/Manual CTLE + continuous DFE(ADFE)
  - Three adaptive loops(CDR, DFE, CTLE) cannot be used at the same time to avoid loop interaction BW need to be separated by decade
- Continuous DFE(ADFE) can increase Transceiver power by 2X
  - One time adaptation helps in achieving additional power savings and reduced effort compared to manual DFE



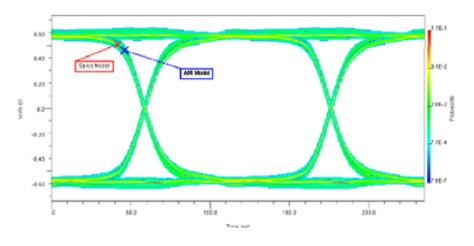


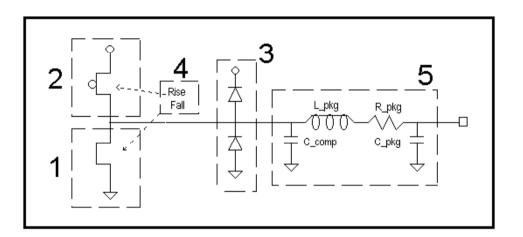

### Flow chart for Link tuning – in progress

© 2012 Altera Corporation Public



### **10GBASE-KR Backplane Electrical**

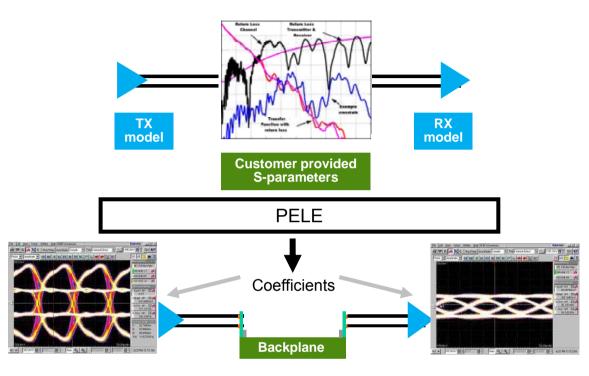

- TX
  - Eye mask
- Channel
  - Channel description
  - Insertion loss
  - Return loss
- RX
  - Jitter Tolerance
  - Return loss
- System
  - < BER = 1E-12






# **Transceiver Simulation Models**

- Altera's suite of transceiver design tools
  - Evaluate performance in custom application
  - Run "What if" simulations for early analysis
  - Create design constraints in layout and design
  - Run in-system verification for board bring-up and live debug






- HSPICE full circuit models
- IBIS-AMI behavioral models
  - Fast simulation
  - Analog and algorithmic description of all major transceiver components
  - Analysis of millions of bits



### **PELE – Pre-emphasis/Equal Link Estimator**



- Optimize the equalization coefficients for the transceiver
- Early estimate of link performance
- Inputs: Channel / settings



# **Simulation Model Comparison**

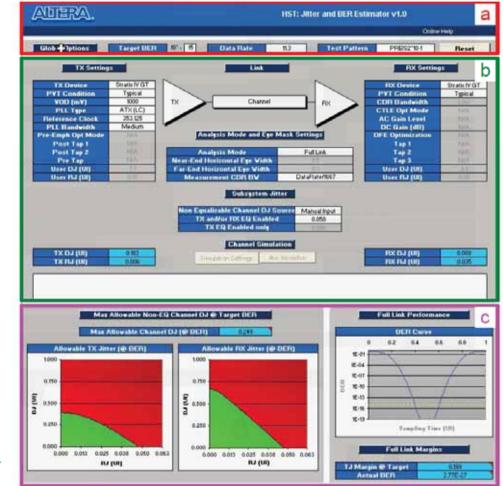
|                                 | HSPICE                       | IBIS-AMI              | PELE                          |
|---------------------------------|------------------------------|-----------------------|-------------------------------|
| Accuracy                        | High                         | High/medium           | Medium                        |
| Time consumption                | Hours to days                | Minutes to hours      | Minutes                       |
| Corner model availability       | Full                         | Full                  | TT/NormV/85C                  |
| Flexible data inputs            | Yes                          | Yes                   | PRBS-7/10                     |
| Link to other devices           | Yes                          | Yes                   | Νο                            |
| EDA tool requirement            | Synopsys HSPICE              | Yes, independent      | NA                            |
| Simulation platform requirement | 64-bit Linux,<br>8 GB memory | EDA-tool<br>dependent | 32-bit system,<br>1 GB memory |



# **HST Jitter and BER Estimator**

### Custom characterization

- Quickly and accurately estimate system link reliability (BER)
- Utilize customer-specific channel (S-Parameter)
- Run statistical analysis using characterization data

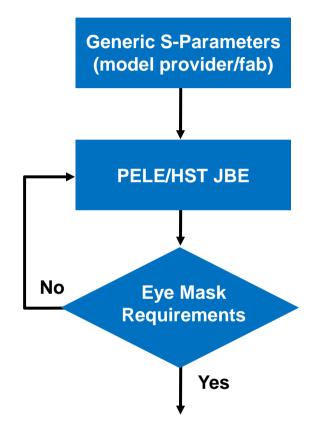

### Margin analysis

- TX
- RX
- Channel

#### Reduction of system cost

 Cost-effective alternatives for the same system performance

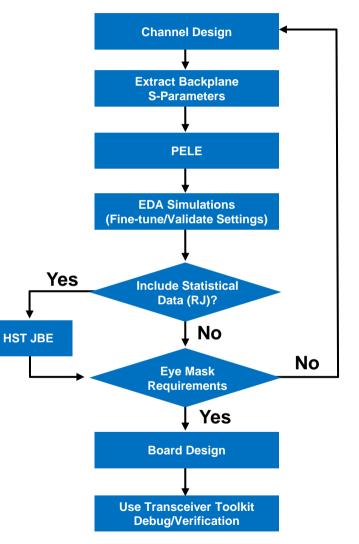
#### *Currently Available for Stratix IV and V FPGAs*






### **Link Simulation Flow – Early Stage**

Use generic S-parameter file


- From backplane model provider, EDA simulation tool extraction or VNA measurement
- Use PELE/JBE to see if the selected device compensates channel losses using preemphasis or equalization, or both
- Check to see if the eye opening meets the protocol requirements or device requirements

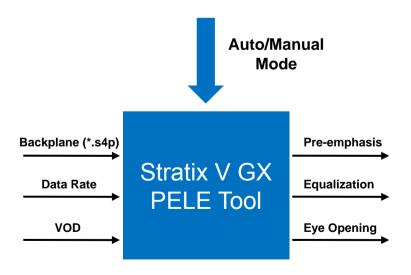




# **Link Simulation Flow – Design Phase**

- Channel design
  - Further analysis
- Pre-emphasis and/or equalization settings selection
- Fine tune/validate settings – HSPICE
  - IBIS-AMI behavioral models
- Use JBE to include the statistical data
- Use the transceiver toolkit to verify and debug





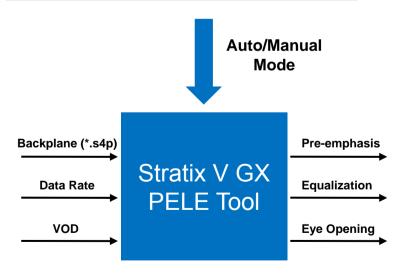

# **PELE Configuration**

- Standalone mathematical tool
  - Requires MATLAB run-time library
- Inputs
  - Data rate
  - $-V_{OD}$
  - Backplane
  - TX pre-emphasis setting
  - RX equalization setting
    - AC gain (CTLE)
    - DC gain
    - DFE
- Outputs
  - Deterministic eye opening at TX, RX, and post equalization
  - Optimal pre-emphasis and equalization setting

| Optimization<br>Method | TX<br>Pre-emphasis | RX CTLE |
|------------------------|--------------------|---------|
| 1                      | Manual             | Auto    |
| 2                      | Auto               | Auto    |
| 3                      | Auto               | Manual  |
| 4                      | Manual             | Manual  |

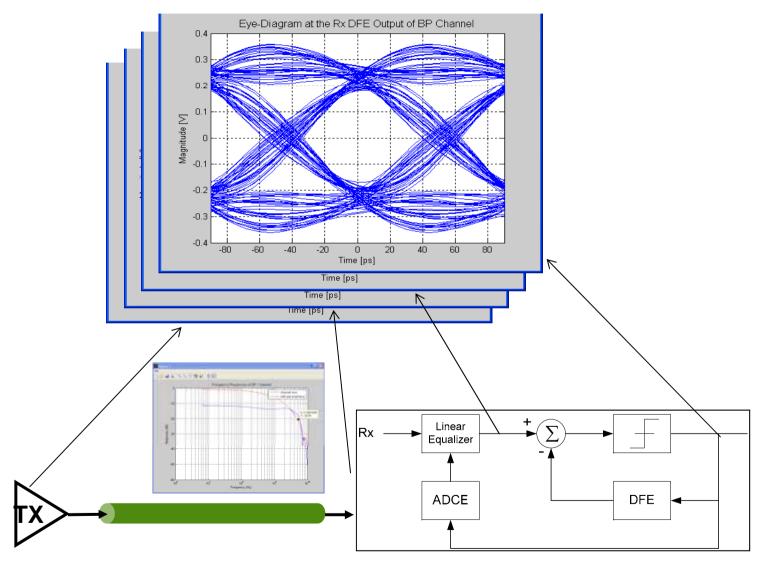
| Optimization Method | DFE     |
|---------------------|---------|
| 1                   | Disable |
| 2                   | Auto    |
| 3                   | Manual  |






# **PELE Configuration**

- Standalone mathematical tool
  - Requires MATLAB run-time library
- Inputs
  - Data rate: 10.3125 Gbps
  - V<sub>OD</sub> : 1000 mV
  - Backplane:"30inches\_2connectors\_backplane.s4p"
  - TX pre-emphasis setting: Auto
  - RX equalization setting
    - AC gain (CTLE) : Auto
    - DC gain: 4 (0-8 dB)
    - DFE: Auto
- Outputs
  - Deterministic eye opening at TX, RX, and post equalization
  - Optimal pre-emphasis and equalization setting

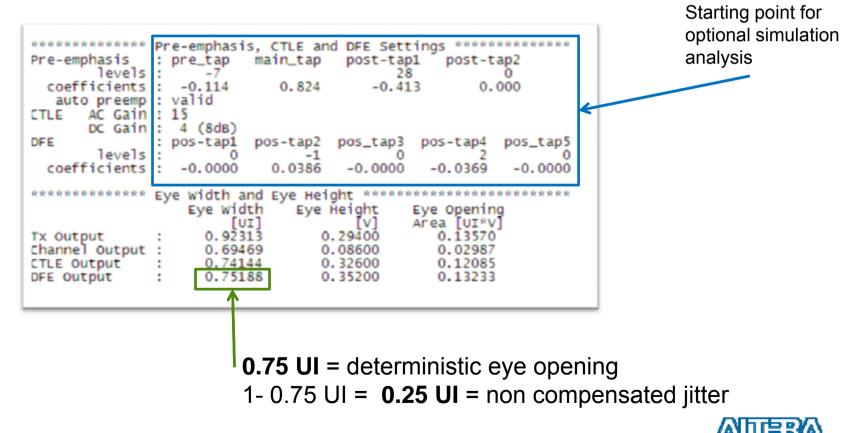

| Optimization<br>Method | TX<br>Pre-emphasis | RX CTLE |
|------------------------|--------------------|---------|
| 1                      | Manual             | Auto    |
| 2                      | Auto               | Auto    |
| 3                      | Auto               | Manual  |
| 4                      | Manual             | Manual  |

| Optimization Method | DFE     |
|---------------------|---------|
| 1                   | Disable |
| 2                   | Auto    |
| 3                   | Manual  |





### **PELE Simulation (30" link @10.3125G)**



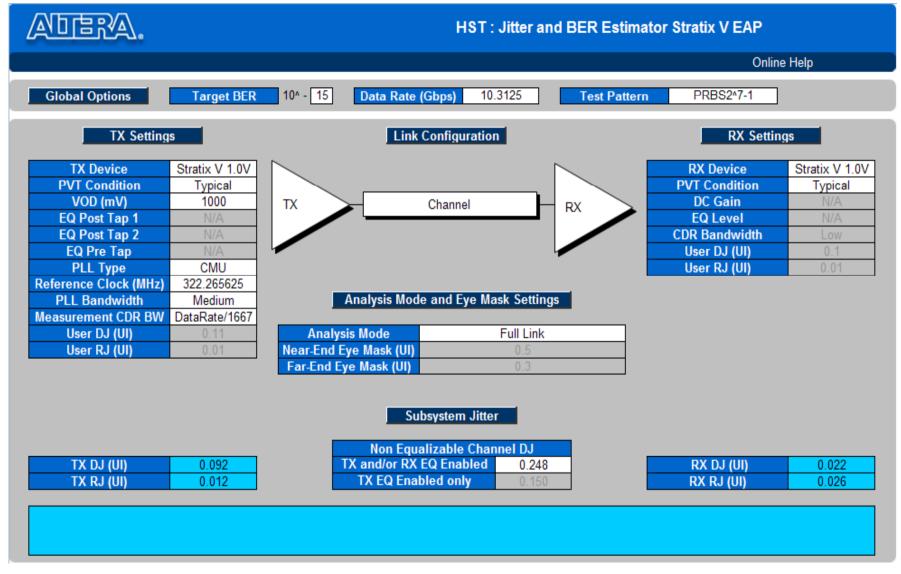



© 2012 Altera Corporation Public

### **PELE Simulation Output**

Refer to Stratix V user guide on PELE instructions
PELE output results:

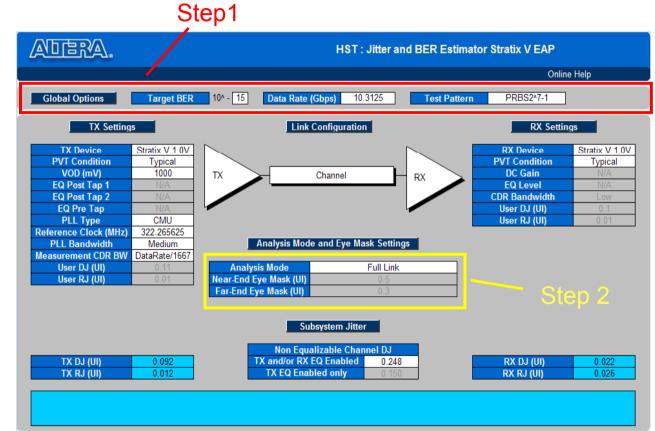



### System Performance



- PELE analysis is a deterministic simulator
- Jitter and BER Estimator (JBE) incorporates random jitter components of transmitter and receiver through characterized data
  - Early version (EAP) of Stratix V JBE is based on Stratix IV data
  - Final version will incorporate actual silicon measurement
- JBE will determine Bit Error Ratio performance of link

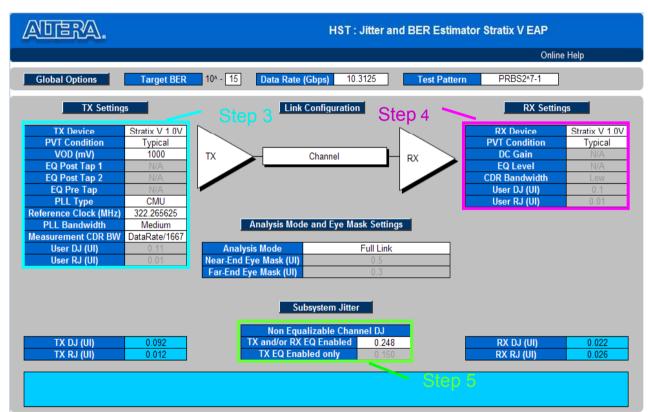



### **Jitter and BER Estimator Tool**



ADERA.

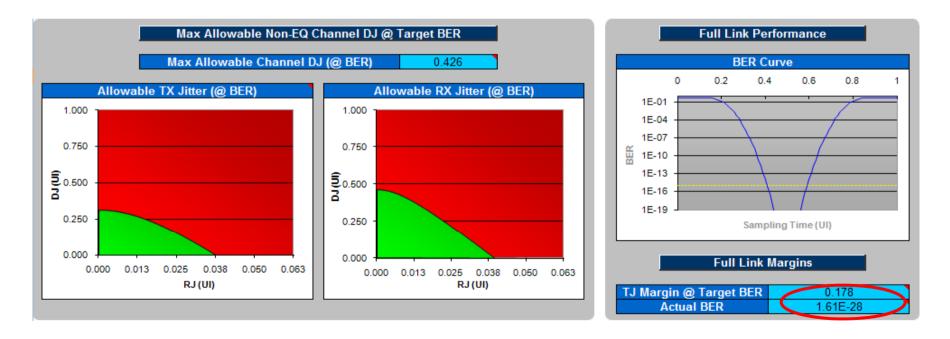
# **JBE Configuration Steps**


- 1. Setup global parameters
  - Target BER
  - Data Rate (Gbps)
  - Test Pattern
- 2. Link configuration
  - Analysis mode selection/eye mask setup
  - Options: Full
     Link, TX, RX





# **JBE Configuration Steps**

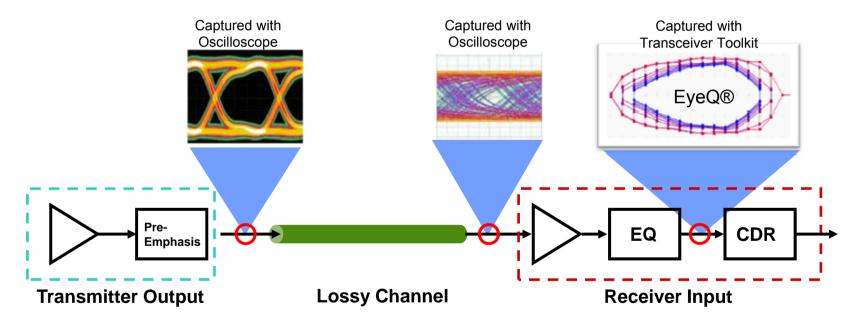

- 3. Configure TX settings
- 4. Configure RX settings
- 5. Input the nonequalized channel DJ from PELE simulation output
  - "1 Eye opening" post equalization
  - May add margin to this number to account for cross-talk





### Link Analysis: Full Link Mode

- Full link simulation shows that the link meets the BER target of 10<sup>-15</sup>
- Margin analysis

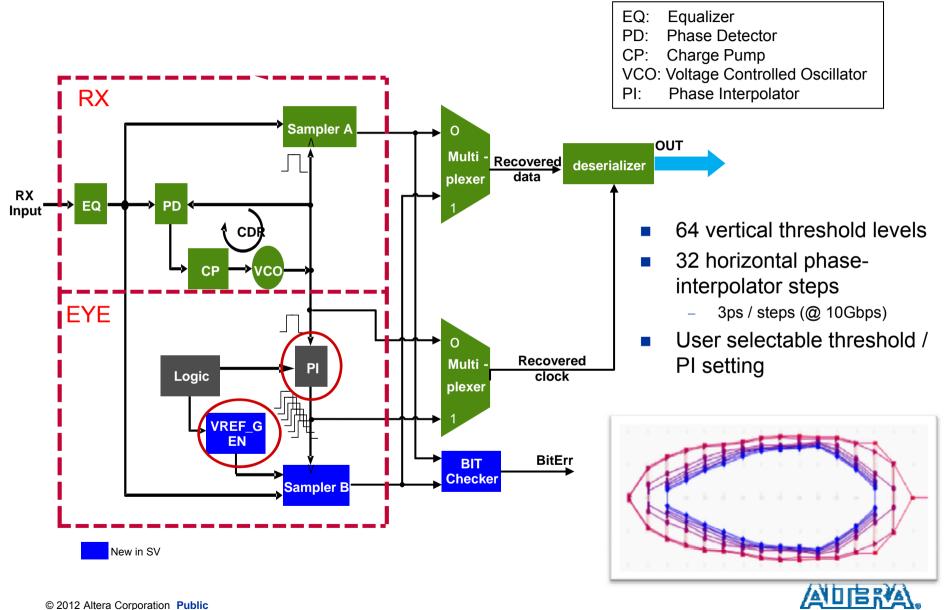





© 2012 Altera Corporation Public 207

### **EyeQ Enables On-Chip Analog Debug**

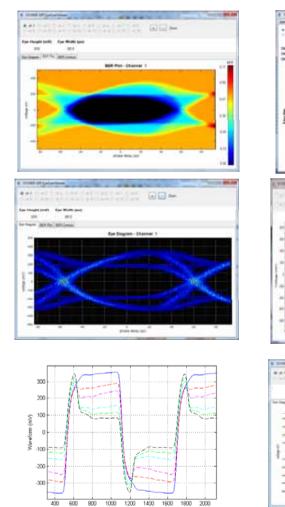
- EyeQ is a circuit that enables users to "probe" the CDR input
- Users can view the eye opening at the CDR input
- Users can see the correlation of EQ settings to eye opening
- EyeQ enables users to use the debug feature with live traffic




#### *Minimize board bring up / debug time with Dynamic reconfiguration and EyeQ*

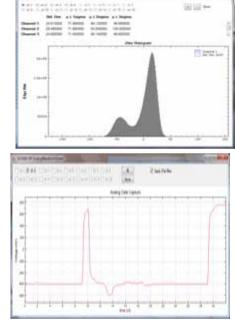


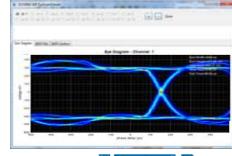
### **EyeQ Circuit**


209



### **More Sophisticated Tools**

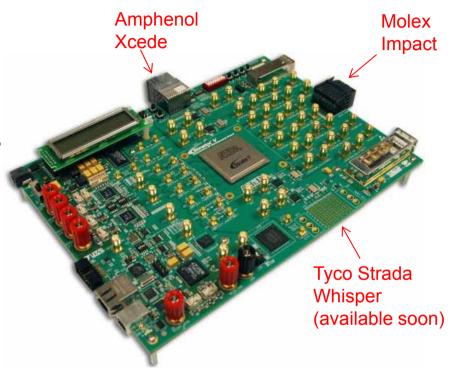

#### DFT


- Eye Diagram (Persistence mode)
- Eye Diagram (BER plot)
- BER Contours
- True Oscilloscope Capability
- Jitter Measurement
- Edge rates & Pre-emphasis measurements
- and more ...



Time (ps)










### **SI Board Backplane Support**

- Designed with mating BP connector from each vendor
   > Amphenol, Molex, Tyco
- Can directly plug into vendor's standard backplanes
- Characterize performace at 10G & 12.1G
- Evaluate performance at higher data rates (ie, 14.1G)



Stratix V SI Board



### **High-Speed Transceiver Toolkit**

© 2012 Altera Corporation—Public



# **High-Level Challenges – Debug Phases**

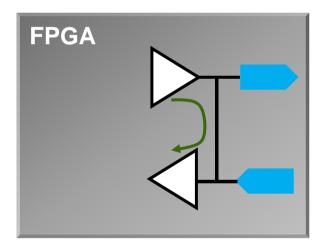
### Phase 1:

Check if data is passing through transceiver channel during PCB bring-up

- Test BER by generating and verifying industry-standard PRBS data patterns
- Dynamically reconfigure the pre-emphasis and equalization settings
- Analyze the link by using Stratix V EyeQ feature to find optimal settings

### **Phase 2:**

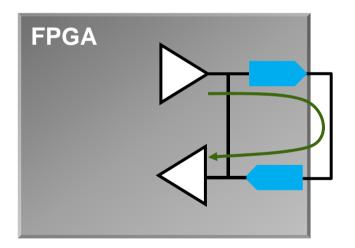
Perform in-system or mission-mode link analysis with real-time data in an operating hardware system


- Integrate completed user design for full system testing
- Verify BER by using Stratix V bit comparator



### **Debug Phase 1 – Q & A (1/3)**

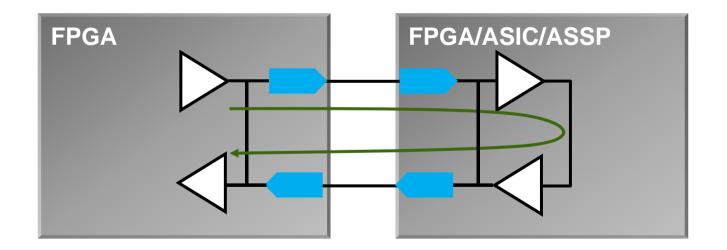
Can I see data in the transceiver channels?


- Perform internal serial loopback
- TX and RX loopback directly within the silicon





### **Debug Phase 1 – Q & A (2/3)**


- Can I see data drive out of the FPGA TX pin and the same data drive back into the RX pin, and vice versa?
  - Perform external loopback
  - TX and RX drive in and out of the FPGA pins





### **Debug Phase 1 – Q & A (3/3)**

- Can I see data drive out of the FPGA TX pin and the same data received in another device or external test equipment, and vice versa?
  - Perform reverse serial loopback
  - TX from device 1 drives RX in device 2 and vice versa
  - External test equipment drives RX in device 1 and vice versa





### Debug Phase 2 – Q & A

- Can I see data running in the completed hardware system?
  - Run final test by using the fully integrated user design



### **Transceiver Toolkit Overview**

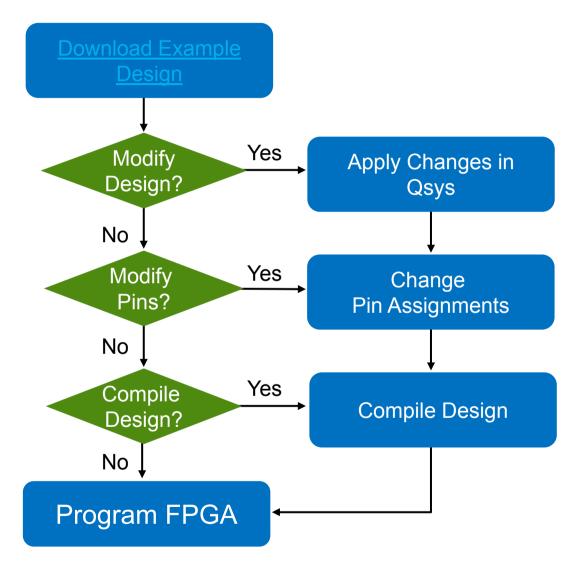


© 2012 Altera Corporation—Public

### What is the Transceiver Toolkit?

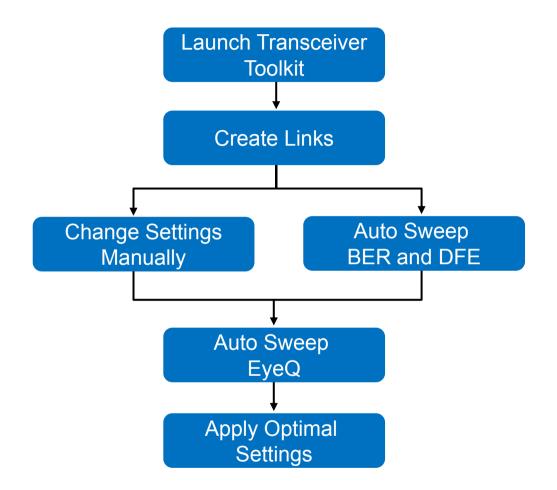
- The Transceiver Toolkit helps users generate designs to control and test transceivers during PCB bring up or in-system signal integrity analysis
- Users can easily control PMA settings, generate and check PRBS patterns to ensure optimal link operation
- Both command line and graphical user interfaces are available




# **Transceiver Toolkit Features Overview**

| Features                           | Description                                                                                                                                                                                                                      |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transceiver channels               | <ul> <li>Consist of full-duplex transmitter (TX) and receiver (RX) channels</li> <li>Enable and disable each transceiver channel</li> </ul>                                                                                      |
| Dynamic reconfiguration            | <ul> <li>Change configuration (e.g. data rate, differential output voltage (V<sub>OD</sub>), pre- emphasis,<br/>decision feedback equalizer (DFE), continuous-time linear equalizer (CTLE),<br/>and EyeQ) at run time</li> </ul> |
| EyeQ                               | Draw BER bathtub curve and eye contour – Stratix V only                                                                                                                                                                          |
| DFE                                | Enable decision feedback equalization (DFE) – Stratix V only                                                                                                                                                                     |
| Data pattern generator and checker | <ul> <li>Change test patterns (e.g. pseudo-random binary sequence (PRBS)</li> <li>7, 15, 23, and 31) at run time</li> </ul>                                                                                                      |
| Auto sweep                         | <ul> <li>Run sweep tests to converge optimal pre-emphasis and EyeQ settings</li> <li>Provide target BER for error check</li> </ul>                                                                                               |
| Error insertion                    | Insert error on serial data in transceiver channel                                                                                                                                                                               |
| Status                             | <ul> <li>Indicate link lock, # of errors, # of transmitted data, and BER</li> </ul>                                                                                                                                              |
| Reporting                          | <ul> <li>Report settings converged for different BER, equalization, and<br/>pre-emphasis</li> </ul>                                                                                                                              |
| Diagnostics                        | Perform serial loopback and reverse serial loopback tests                                                                                                                                                                        |






### **Recommended User Flow (1/2)**



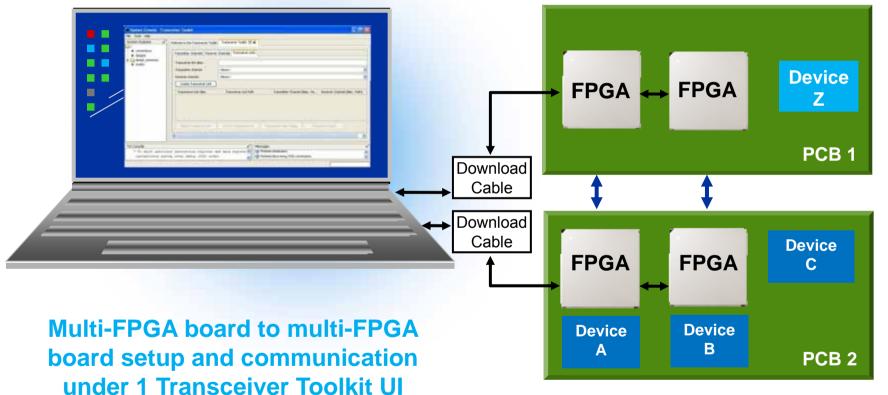


### **Recommended User Flow (2/2)**





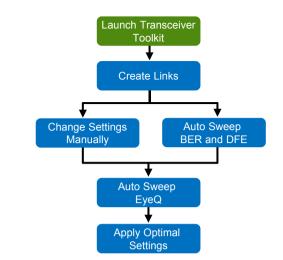
### **PCB Set-Up**

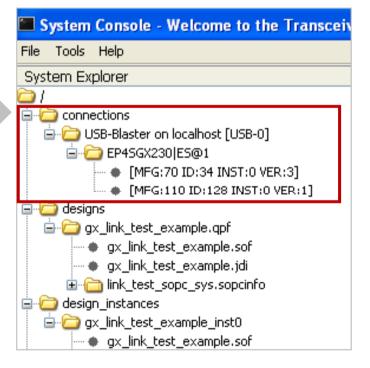

- Power up PCB
- Check if FPGA was configured successfully
- Make sure the links you want to test are connected correctly (e.g. connect cables for external loopback shown below)





### **Board to Board**


### **Transceiver Toolkit**





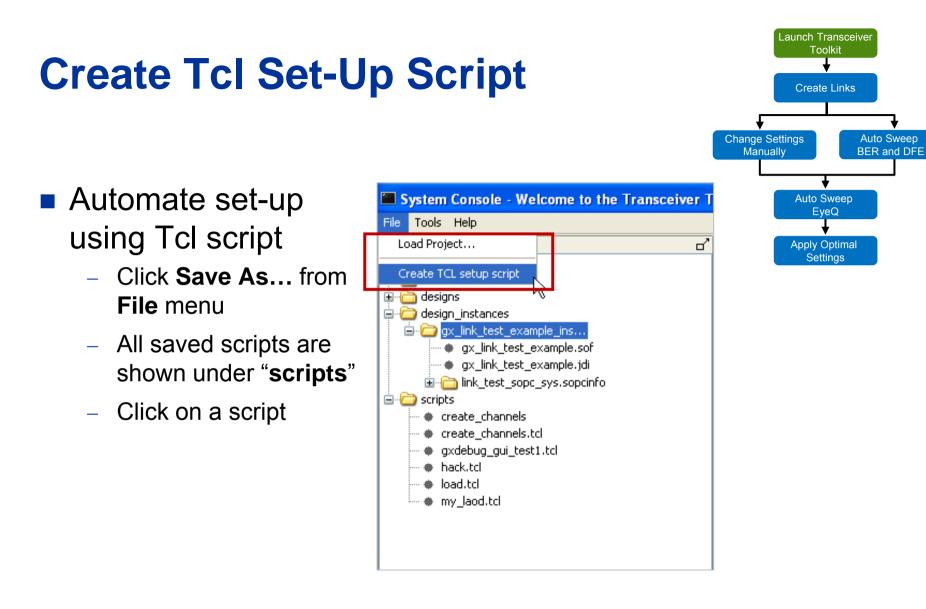

## Launch Transceiver Toolkit

- Click Transceiver Toolkit from Tools menu in Quartus II software
- From System Explorer window, under "connections", check list for your JTAG device
  - If device name does not appear, make sure the device is powered on and connected to the machine
- Load Quartus II project
   containing transceiver design
   File → Load Project
- Open Transceiver Toolkit tab
   Tools → Transceiver Toolkit





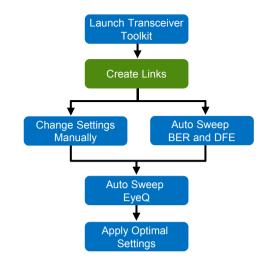



### **Connect to Targeted Device**

#### Linking design instance to device:

- From System Explorer window, navigate to "design\_instances"
- Right click on targeted instance
- Select your connected device

| System Console - Transceiver Toolkit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| File Tools Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |
| System Explorer  System | Welcome to the Transceiver Toolkit       Transceiver Toolkit         Transmitter Channels       Receiver Channels         Alias: |
| design_instances     gx_link_test_extLink design instance to device     gx_link_test_example.jdi     gy_link_test_sopc_sys.sopcinfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onnections/USB-Blaster on localhost [USB-0]/EP45GX230 ES@1<br>IX_xcvr_address_U //design_instances/gx_link_test                  |
| Himin scripts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |








### **Create Links**

- Transceiver Links tab
  - The channels in your design are auto-populated in the Transmitter Channels and Receiver Channels tabs
  - By default, a link will be created between the transmitter and receiver of the same channel and shown in Transceiver Links



| Transceiver link alias:  | Loopback_Link_xcvr_address_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       |  |  |  |  |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Transmitter channel:     | TX_xcvr_address_0 : /design_instances/gx_link_test_example_inst0/link_test_sopc_sys.sopcinfo/TX_xc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |  |  |  |  |  |  |  |  |
| Receiver channel:        | RX xcvr address 0 : /design in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nstances/gx_link_test_example_inst0/link_test_sopc_sys.sopcinfo/RX_xc |  |  |  |  |  |  |  |  |
| Coosto Transmisso Link   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |  |  |  |  |  |  |
| Create Transceiver Link  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |  |  |  |  |  |  |  |  |
| Transceiver Link Alias   | Transceiver Link Path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Transmitter Channel (Alias : Pa Receiver Channel (Alias : Path)       |  |  |  |  |  |  |  |  |
|                          | Construction of the second based for the second se<br>second second sec | dress_0sys.sopcinfo/TX_xcvr_address_0ys.sopcinfo/RX_xcvr_address      |  |  |  |  |  |  |  |  |
| .oopback_Link_xcvr_addre | ss_0 //Loopback_Link_xcvr_add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | areasTospaperate of LVTYCA_TanglessToaspheric of KVTYCA_Tangless      |  |  |  |  |  |  |  |  |
| .oopback_Link_xcvr_addre | ss_0loopback_Link_xcvr_add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aress_osystsopenino/ rvTvcvi Taggress_o/sysopenino/rvTvcvi Taggress   |  |  |  |  |  |  |  |  |
| .oopback_Link_xcvr_addre | ess_u ,,Loopback_Link_xcvr_add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aressToSherarobra and an Transform Sheraro wa Toparess                |  |  |  |  |  |  |  |  |
| .oopback_Link_xcvr_addre | ess_u,Loopback_Link_xcvr_add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.632_0_111373130Pc111071.V_VCM_3001635_0_11130Pc11107KV_VCM_3001635  |  |  |  |  |  |  |  |  |
| Loopback_Link_xcvr_addre | ess_U ,,Loopback_Link_xcvr_add                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |  |  |  |  |  |  |  |  |



### **Control Transceiver Link**

#### New Custom Control Panel (From QII 11.0 onwards)

- Intelligent control management for improved ease of use
- Additional data reported channel datarate, reference clock, LTD/LTR lock status
- Serial Loopback Control added
- Highly visible status indicators color and animation

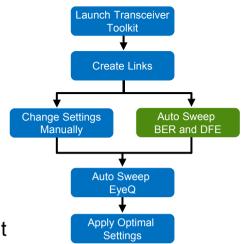
| Welcome to the Transceiver Toolkit Transceiver Toolkit Link: | Loopback_Link_xcvr_address_0  X            | Welcome to the Transceiver Toolkit Transceiver Toolkit Link: Loopback_Link_xcvr_address_0 🗖 🗙 |
|--------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------|
| Transmitter Channel                                          | Receiver Channel                           | CTransmitter Channel                                                                          |
| Transmitter channel alias: () TX_xcvr_address_0              | Receiver channel alias: CRX_xcvr_address_0 | Transmitter channel alias: TX_xcvr_address_0 Receiver channel alias: () RX_xcvr_address_0     |
| Logical channel address: 0                                   | Logical channel address 0                  | Logical channel address: 0 Logical channel address 0 Status: Checking                         |
| Data rate: 1250.0 Mbps                                       | Data rate: 1250.0 Mbps                     | Data rate: 1250.0 Mbps Data rate: 1250.0 Mbps                                                 |
| PLL refclk freq: 156.25 MHz                                  | PLL refclk freq: 156.25 MHz                | PLL refck freq: 156.25 MHz PLL refck freq: 156.25 MHz                                         |
| VOD control: 2                                               | DC gain: 1                                 | VOD control: 6 V DC gain: 3 V                                                                 |
| Pre-emphasis 1st post tap: 0                                 | Equalization control: 11                   | Pre-emphasis 1st post tap: 5 V Equalization control: 0 V                                      |
| Pre-emphasis pre-tap: 0                                      | DFE 1st tap value: off                     | Pre-emphasis pre-tap: 6 V DFE 1st tap value: off V                                            |
| Pre-emphasis 2nd post tap: 0                                 | DFE 2nd tap value: 0                       | Pre-emphasis 2nd post tap: 5 V DFE 2nd tap value: 0 V                                         |
| Test pattern: PRBS31                                         | DFE 3rd tap value: 0                       | Test pattern: PRBS31 V DFE 3rd tap value: 0 V                                                 |
| Preamble word:                                               | EyeQ phase step: off                       | Preamble word: 0 EyeQ phase step: off                                                         |
| Number of preable beats:                                     | Enable word aligner:                       | Number of preable beats: 0 Enable word aligner:                                               |
| Use preamble upon start:                                     | Test pattern: PRBS31 🗸                     | Use preamble upon start: Test pattern: PRBS31                                                 |
| TX/CMU PLL status: PLL locked                                | Number of bits tested: 1750954610400       | TX/CMU PLL status: PLL locked Number of bits tested: 5979375569600                            |
|                                                              | Number of error bits: 2                    | Number of error bits: 624                                                                     |
|                                                              | Bit error rate (BER): 1.1422E-12           | Bit error rate (BER): 1.0436E-10                                                              |
|                                                              | RX CDR PLL status: PLL locked              | RX CDR PLL status: PLL not locked                                                             |
|                                                              | RX CDR data status: PLL locked             | RX CDR data status: PLL not locked                                                            |
|                                                              |                                            |                                                                                               |
| Start Stop Inject Error Re                                   | eset Serial loopback enabled               | Start Stop Inject Error Reset Serial loopback enabled                                         |



### **Improved Test Management**

- Easily manage many parallel running BER tests
- Identify which channel resources are in use
- Quickly identify test run status (not started, running, running with problem)

| Transmitter Channels Receiver                                                                                                    | Channels Transceiver Links                                                                                     |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Transceiver link alias:                                                                                                          | Loopback_Link_xcvr_address_2                                                                                   |  |  |  |  |  |  |  |  |  |
| Transmitter channel:                                                                                                             | TX_xcvr_address_2 : /design_instances/gx_link_test_example_inst0/link_test_sopc_sys.sopcinfo/TX_xcvr_address_2 |  |  |  |  |  |  |  |  |  |
| Receiver channel: RX_xcvr_address_2 : /design_instances/gx_link_test_example_inst0/link_test_sopc_sys.sopcinfo/RX_xcvr_address_2 |                                                                                                                |  |  |  |  |  |  |  |  |  |
| Create Transceiver Link                                                                                                          |                                                                                                                |  |  |  |  |  |  |  |  |  |
| Transceiver Link Alias                                                                                                           | Transceiver Link Path Transmitter Channel (Alias : Path) Receiver Channel (Alias : Path)                       |  |  |  |  |  |  |  |  |  |
| Loopback_Link_xcvr_addre<br>Loopback_Link_xcvr_address_                                                                          |                                                                                                                |  |  |  |  |  |  |  |  |  |
| Loopback_Link_xcvr_address C Loopback_Link_xcvr_address                                                                          |                                                                                                                |  |  |  |  |  |  |  |  |  |
|                                                                                                                                  |                                                                                                                |  |  |  |  |  |  |  |  |  |
| Delete Transceiver Link                                                                                                          | Control Transceiver Link Transceiver Auto Sweep Transceiver EyeQ                                               |  |  |  |  |  |  |  |  |  |




### **Auto-Sweep BER Tests**

### Click Transceiver Auto Sweep

- Choose the Minimum and Maximum values for each setting (e.g. VOD, pre-emphasis, DC gain, equalization, etc.)
- Case count = number of different permutations will be performed
- Run length = conditions for stopping the auto-sweep (e.g. time limit per permutation, error rate, etc.)

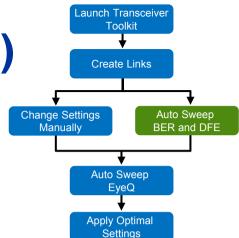
| Welcome to the Transceiver Tool<br>Link: Loopback_Link_xcvr |            | ver Toolkit           |                 | r: TX xcvr add<br>Sweep: Loopba |         | Receiver: RX xc<br>r_address_0 |   |
|-------------------------------------------------------------|------------|-----------------------|-----------------|---------------------------------|---------|--------------------------------|---|
| Test mode: 🔿 Smart auto sweep                               | Run length | : 🔽 Time limit:       |                 |                                 | 10.0    | seconds                        | ~ |
| 📀 Full auto sweep                                           |            | 🔲 Maximum             | tested bits:    |                                 | 3.0     | × 1E 12                        | Ŀ |
| est pattern: PRBS7                                          | -          | Error rate            | limit: Start    | checking after:                 | 1.0     | × 1E 8                         | E |
|                                                             |            | Bit er                | ror rate achie  | ves below:                      | 1.0     | x 1E -12                       |   |
|                                                             |            | 🔽 Bit er              | ror rate exce   | eds:                            | 1.0     | × 1E -8                        |   |
| Transmitter settings                                        |            |                       |                 |                                 |         |                                |   |
|                                                             | Minimum:   | Maximum:              | Current         | :: Best:                        |         |                                |   |
| VOD control:                                                | 0          | - 1                   | ✓ N/A           | 0                               |         |                                |   |
| Pre-emphasis 1st post-tap:                                  | 0          | 2                     | 💙 N/A           | 0                               |         |                                |   |
| Pre-emphasis pre-tap:                                       | 0          | • 0                   | ✓ N/A           | 0                               |         |                                |   |
| Pre-emphasis 2nd post-tap:                                  | 0          | <ul> <li>0</li> </ul> | 🗙 N/A           | 0                               |         |                                |   |
| DC gain:                                                    | Minimum:   | Maximum:              | Curren          | :: Best:<br>O                   |         |                                |   |
| Equalization control:                                       |            | - 0                   | ✓ N/A           | 0                               |         |                                |   |
| DFE 1st tap:                                                | off        | off                   | 🖌 N/A           | off                             |         |                                |   |
| DFE 2nd tap:                                                | 0          | • 0                   | 🖌 N/A           | 0                               |         |                                |   |
| DFE 3rd tap:                                                | 0          | - 0                   | ✓ N/A           | 0                               |         |                                |   |
| Status                                                      |            |                       |                 |                                 |         |                                |   |
| Tested bits:                                                |            |                       | Current:<br>N/A | Best:<br>1.3398E10              | )       |                                |   |
| Errors:                                                     |            |                       | N/A             | OEO                             |         |                                |   |
| Bit error rate:                                             |            |                       | N/A             | 0.0                             |         |                                |   |
| Case count:                                                 |            |                       | -/4             | 1                               |         |                                |   |
| Progress:                                                   |            |                       |                 |                                 | Stopped |                                |   |
| Start Stop Re:                                              |            | ate Report            |                 |                                 |         |                                |   |





### **Auto-Sweep BER Report**

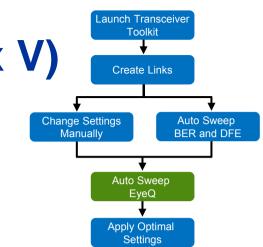
- Create reports by clicking Create Report in the middle of the test or when the test completes
- Different columns show various transceiver settings
  - All columns can be sorted
- The report is exportable in a .csv format
  - Right click on report, Select "Export..."

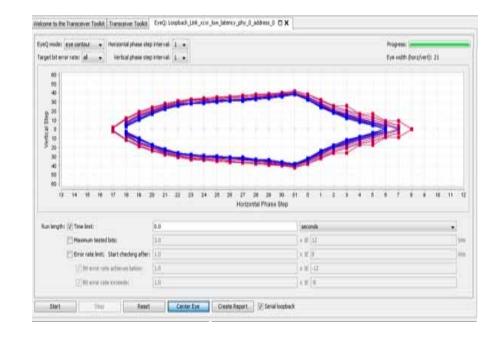

|                                                               | Welcome to the Transceiver Toolkit |             |                                             |          |          |         | Transceiver Toolkit             |             |             | 1           | Transmitter: TX xcvr address 0 |             |            |     |
|---------------------------------------------------------------|------------------------------------|-------------|---------------------------------------------|----------|----------|---------|---------------------------------|-------------|-------------|-------------|--------------------------------|-------------|------------|-----|
| Receiver: RX_xcvr_address_0 Link: Loopback_Link_xcvr_address_ |                                    | ess_0       | _0 Auto Sweep: Loopback_Link_xcvr_address_0 |          |          |         | Report: 2010-12-15 14:55:14 🗖 🗙 |             |             |             |                                |             |            |     |
| por                                                           | rt: 2010-12-15 1                   | 4:55:14     |                                             |          |          |         |                                 |             |             |             |                                |             |            |     |
|                                                               | Data Pattern                       | VOD Control | Pre-emph                                    | Pre-emph | Pre-emph | DC Gain | Equalizati                      | DFE 1st Tap | DFE 2nd Tap | DFE 3rd Tap | Phase Step                     | Tested Bits | Error Bits | BE  |
| 1                                                             | PRBS7                              | 0           | 0                                           | 0        | 0        | 0       | 0                               | off         | N/A         | N/A         | off                            | 13398497728 | 0          | 0.0 |
| 2                                                             | PRBS7                              | 1           | 0                                           | 0        | 0        | 0       | 0                               | off         | N/A         | N/A         | off                            | 13419074304 | 0          | 0.0 |
| э                                                             | PRD57                              | 1           | 1                                           | 0        | 0        | 0       | 0                               | off         | N/A         | N/A         | off                            | 12206997440 | 0          | 0.0 |
| 4                                                             | PRBS7                              | 1           | 2                                           | 0        | 0        | 0       | 0                               | off         | N/A         | N/A         | off                            | 13398426976 | 0          | 0.0 |



### Auto-Sweep DFE Tests (Stratix V)

- 1. Auto sweep with DFE off
- 2. With best BER results, lock down settings (VOD, pre-emphasis, DC gain, equalization)
- 3. Then sweep with DFE settings to find best BER


|                            | Minimum: |   | Maximum: |     | Current: | Best:     |
|----------------------------|----------|---|----------|-----|----------|-----------|
| VOD control:               | 1        | ~ | 1        | ~   | N/A      | 1         |
| Pre-emphasis 1st post-tap: | 0        | ~ | 0        | *   | N/A      | 0         |
| Pre-emphasis pre-tap:      | 0        | ~ | 0        | *   | N/A      | 0         |
| Pre-emphasis 2nd post-tap: | 0        | * | 0        | *   | N/A      | 0         |
| Receiver settings          |          |   |          |     |          |           |
|                            | Minimum: |   | Maximum: |     | Current: | Best:     |
| DC gain:                   | 0        | * | 0        | ~   | N/A      | 0         |
| Equalization control:      | 0        | ~ | 0        | ~   | N/A      | 0         |
| DFE 1st tap:               | 0        | ~ | 1        | *   | N/A      | 0         |
| DFE 2nd tap:               | 0        | ~ | 2        | ~   | N/A      | 0         |
| DFE 3rd tap:               | 0        | ~ | 0        | ~   | N/A      | 0         |
| 5tatus                     |          |   |          |     |          |           |
|                            |          |   |          | Cu  | irrent:  | Best:     |
| Tested bits:               |          |   |          | N/A |          | 1.2402E10 |
| Errors:                    |          |   |          | N/A |          | 0E0       |
| Bit error rate:            |          |   |          | N/  | А        | 0.0       |






### Auto-Sweep EyeQ Tests (Stratix V)

- Click Transceiver EyeQ button on Transceiver Links tab to launch the EyeQ window
- Eye Contour automatically generated when sweep completes
- Click Create Report to generate EyeQ reports
  - If you sort by BER column, the number of rows with
     BER = 0 will be considered as the unit width of the eye from the specified physical media attachment (PMA) settings







