
EXILINXALL PROGRAMMABLE

Xilinx 7 Series FPGAs Transceiver Technical Module

Gregory Donzel, FAE SILICA XILINX

Ecole d'Electronique IN2P3, 27 Novembre 2012

Expanding Programmable Technology Leadership

- **Committed to be First to Process Nodes**
- > Pioneering 3-D IC Technology
- >Leading Edge Transceiver Technologies
- > Programmable Analog/Mixed Signal
- System to IC Tools & IP to Enable Silicon

From Programmable Logic to Programmable System Integration

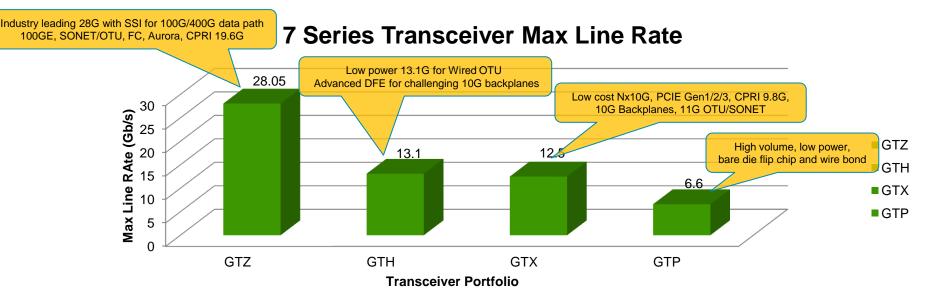
Four Unique Systems Integration Technologies

Multi-core extensible

processing

- Increased system-level performance
 Reduced BOM cost
 Reduced total power
 Leading edge 28nm HPL process
 Agile Analog / Mixed-signal
 - Multi-die integration with SSI Technology

XILINX > ALL PROGRAMMABLE.


Agenda

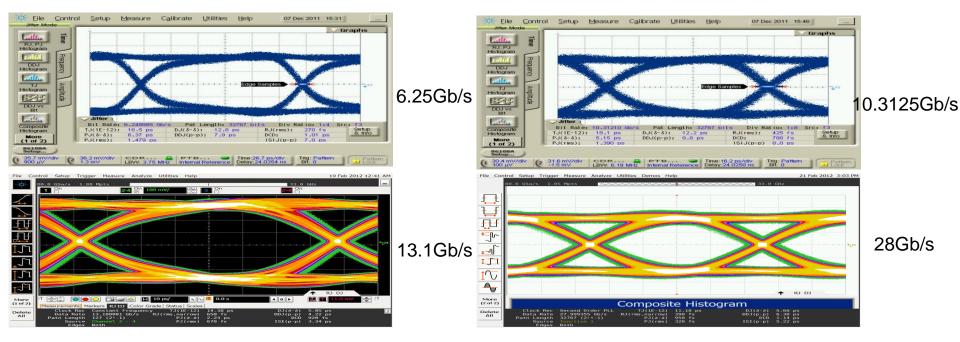
- > 7 Series Transceiver Quick Take
- > 7 Series Transceiver Performance Delivered
 - 7 series GTZ performance
 - 7 series GTX performance
- > Xilinx Transceiver History and Roadmap
- > Design with 7 Series Transceiver
 - Architecture Block Diagrams
 - Backplane and Equalization
 - Optics Support
 - Power Advantage
 - Modeling and Simulation
 - Power Integrity
- > Tools : Transceiver Wizard And ChipScope Pro SIOTK (IBERT)
 - Demos
- > 7 Series Product Table
- Summary

ALL PROGRAMMABLE

Xilinx 7 Series Transceiver Quick Take

Xilinx 7 Series Transceiver - Portfolio and Bandwidth

- 7 series offers a full transceiver portfolio for variant customer needs
 - Ultra-high performance GTZ: 28.05Gb/s X 16
 - High-end Low-power GTH: 13.1Gb/s X 96
 - Mid-Range GTX: 12.5Gb/s X 32
 - High-Volume Low-Power GTP: 6.6Gb/s X 16
- Virtex-7 HT has up to 2.802Tbps total transceiver bandwidth
 - 16 GTZ and 72 GTH transceivers

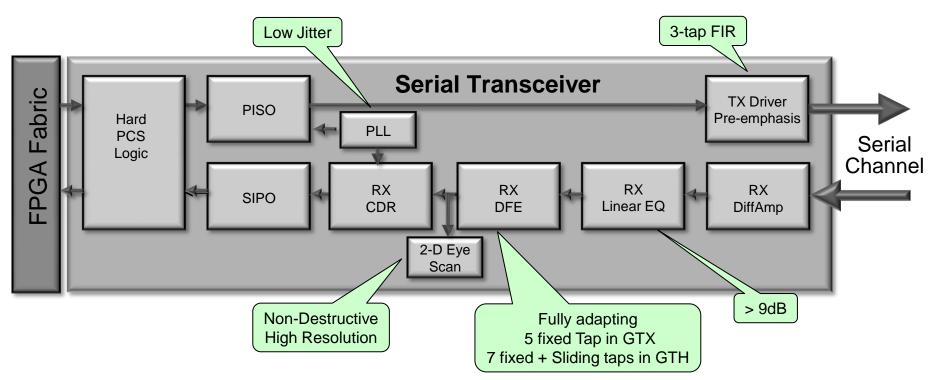


Increased System Performance

High Line Rate and High Count Boost System Throughput

XILINX > ALL PROGRAMMABLE.

Xilinx 7 Series Transceivers Jitter Performance

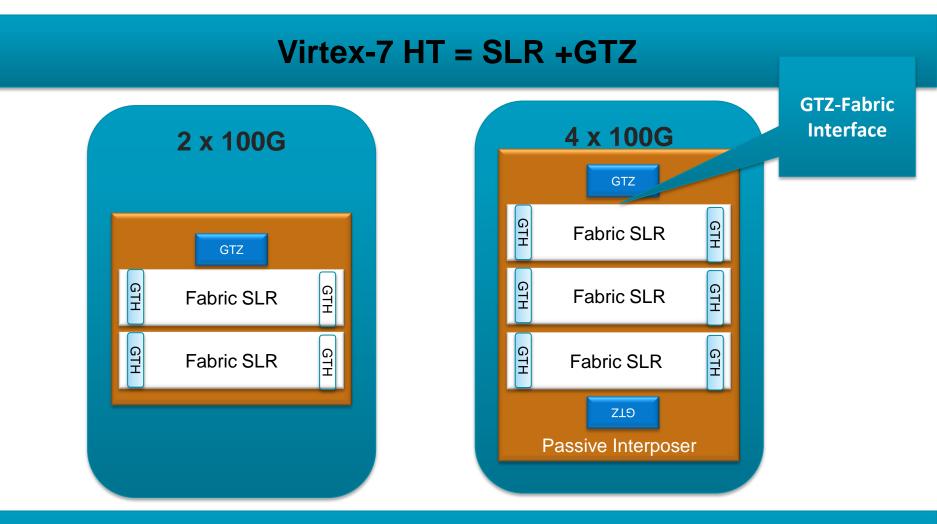


Note: The eye diagrams and jitter are measured with PRBS15 or PRBS7 data pattern on early sample devices at nominal conditions

- 7 series transceivers offer the best jitter performance at 6Gb/s, 10Gb/s+ and 28Gb/s in FPGA industry
- Both transmitter and receiver use the high performance PLL

Xilinx 7 Series Transceiver Signal Integrity

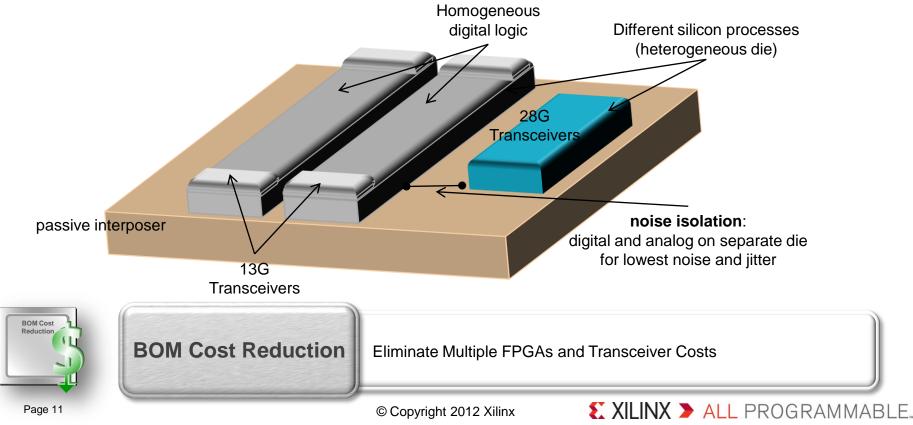
- 7-GTH will have the best equalization capability in FPGA industry
 - Compensate reflection in long channels thus support tough10G backplanes
- 7-GTX equalization is only second to 7-GTH in FPGA industry
 - Fully auto-adaptive DFE for easy link tuning

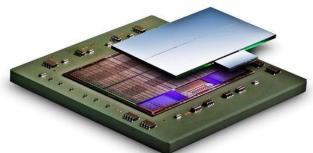

EXILINXALL PROGRAMMABLE

Xilinx 7 Series Transceiver Performance Delivered

7 series HT Devices Overview

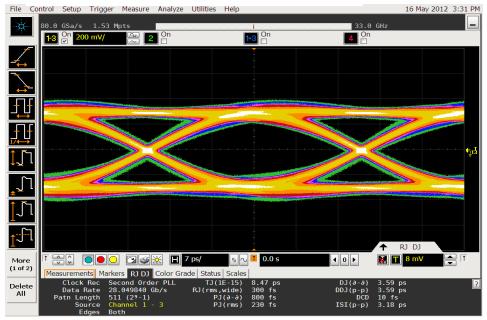
612 8 lanes / 28G 12 lanes / 13G

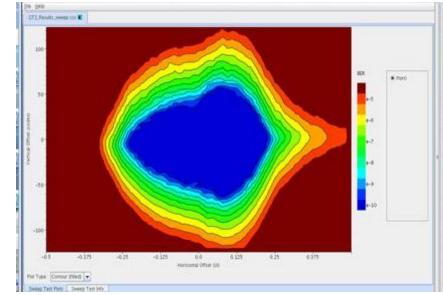



Total Transceiver Bandwidth Each Direction > 1Tbps

Benefits of Heterogeneous Integration

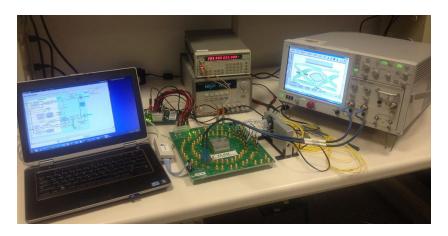
- > Highest levels of integration
- > Form-fit-function die for varying design requirements
- > Electrically isolated 28G transceivers for optimal signal integrity



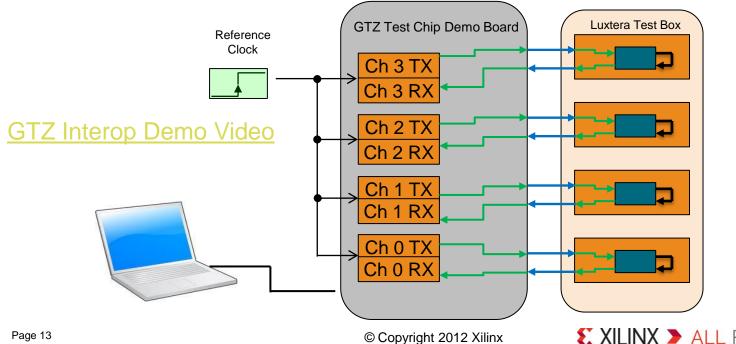

28nm FPGA with GTZ XCVR 7VH580T

Heterogeneous VH580T

VH580T GTZ RX Eye Scan: 28.05Gb/s: Thru 12.5dB Trace

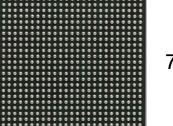

VH580T GTZ TX Eye Diagram: 28.05Gb/s

7VH580T Demo Video


© Copyright 2012 Xilinx

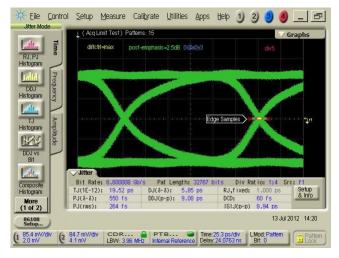
XILINX > ALL PROGRAMMABLE.

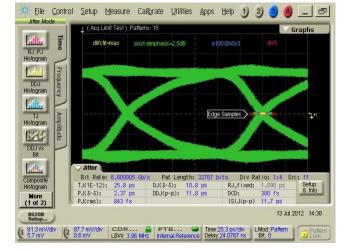
Virtex-7 GTZ Test Chip – 100G Interop with **Luxtera Optical Module**



- 4x26G running a PRBS31 data pattern
- Un-retimed optical module
 - Save on power budget
 - Board space and BOM cost
- Up to 16 GTZ transceivers
 - Can support 400G applications

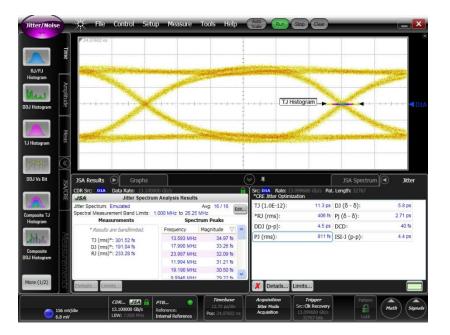
28nm FPGA with GTP XCVR 7A100T/200T




7A100T Part

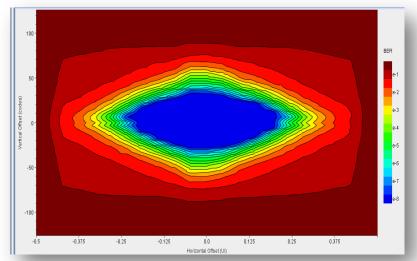
AC701 Board

7A200T TX Eye Diagram: 6.6Gb/s

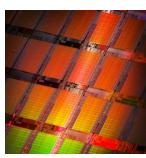

7A100T TX Eye Diagram: 6.6Gb/s

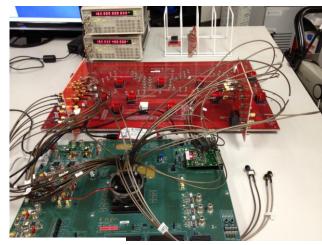

XILINX > ALL PROGRAMMABLE.

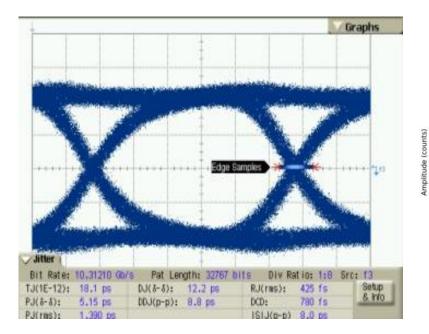
28nm FPGA with GTH XCVR 7VX690T

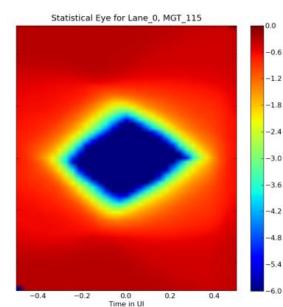


7VX690T Part


VC7215 Char Board


7VX690T GTH RX Eye Scan: 13. 1Gb/s: 33dB 16 inch Tyco Backplane + Line cards → Char Board XILINX → ALL PROGRAMMABLE.


7VX690T TX Eye Diagram: 16 13.1Gb/s <u>7VX690T Demo Video</u>


Industry First 28nm FPGA – 7K325T

K325T silicon wafer March 5th,2011 K325T KC7K325T FC7K325T FC7K325T FC7K325T FC7K325T FFirst Package Parts March 15th,2011 KC724 Char Board

Kintex-7 GTX RX Eye Scan: 10.3125Gb/s: 25dB Molex BP + Line cards + Char Board

Kintex-7 GTX Eye Diagram: 10.3125Gb/s

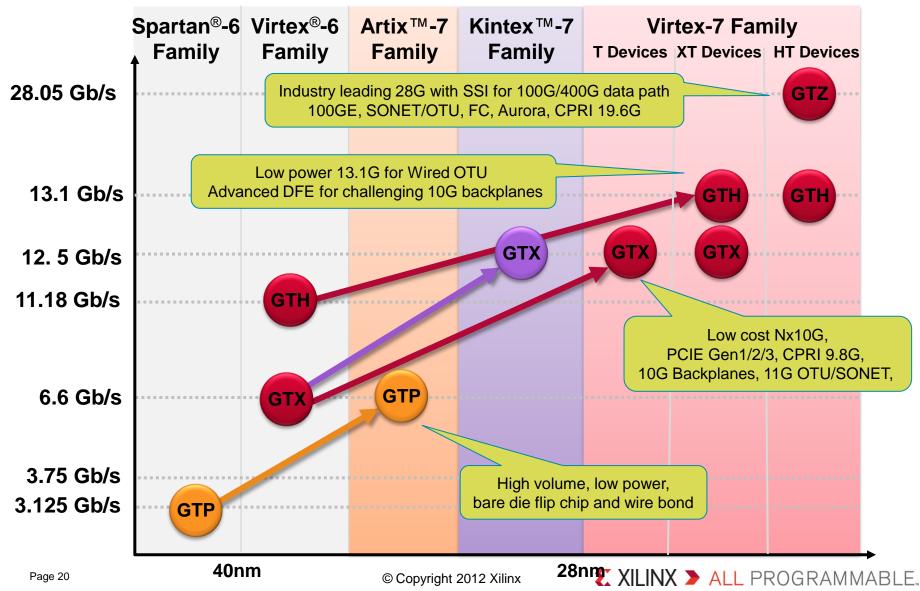
Kintex-7 GTX – Tyco Backplane

Error free for >2hrs. BER ~ 1e-14

© Copyright 2012 Xilinx

XILINX > ALL PROGRAMMABLE.

EXILINXALL PROGRAMMABLE


Xilinx Transceiver History and Roadmap

History of Xilinx Transceivers

Product family	Data Rate Low End	Data Rate Mid Class	Data Rate High End	
Virtex-2 Pro			3.125G	
Virtex-4			6G	2
Virtex-5		3.125G	6.6G	
6-Series	3.75G	6.6G	11.18G	

Xilinx has 80% cumulative revenue share of Transceiver FPGAs!

7 Series Transceiver Roadmap - 40nm => 28nm

7 Series Min/Max Performance by Package/Speed Grade

Speed	Virtex GTZ (Gb/s)				
Grade	min*	max			
-1C/E	2.45	25.78			
-2C/-2L(1V)	2.45	25.78			
- 2G	2.45	28.05			

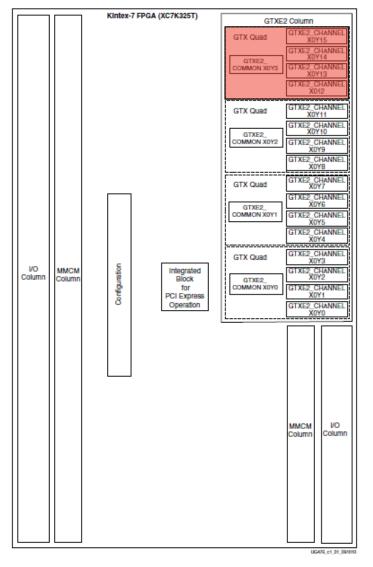
Speed	Virtex GTH (Gb/s)			
Grade	min	max		
-1C/I, -2LE(0.9V)	0.5	8.5		
- 21	0.5	10.3125		
-2C/-2LE (1V)	0.5	11.3		
-3E/-2GE	0.5	13.1		

Speed	Virtex GTX (Gb/s)			
Grade	min	max		
-1/-2L(0.9V)	0.5	6.6		
-2/-2L(1V)	0.5	10.3125		
-3/-2G	0.5	12.5		

Crossel	Kin	tex GTX				(Gb/s)	
Speed Grade	min	max (FB)	max (FF)	Speed Grade	min	max (CS)	max (FB,FF
-1/-2L (0.9v)	0.5	6.6	6.6	-1/-2L(0.9V)	0.5	3.75	3.75
-2/-2L (1V)	0.5	6.6	10.3125	-2/-2L(1V)	0.5	5.4	6.6
-3	0.5	6.6	12.5	-3	0.5	5.4	6.6

Notes:

- 10G+ performance in K7 requires FF Pkg
- G temp grade has -2 fabric with -3 transceivers and 0'C – 100'C temp
 - Available 7V2000, 7VX1140, and 7VH parts
- GTZ frequency range is 19.6G to max with /2, /4 and /8 dividers
- 0~500Mbps can be supported with XAP875
- At 0.9V, -2L transceivers will run up to -1
 rates

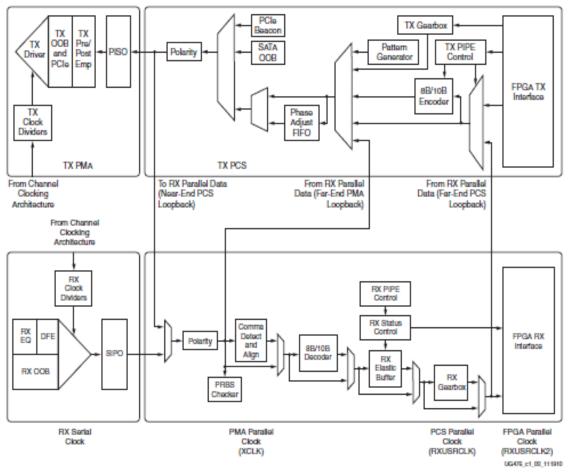


Serial I/O Bandwidth

EXILINXALL PROGRAMMABLE

Xilinx 7 Series Transceiver Architecture

7 Series Architecture Device Layout

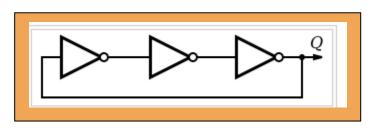

> Transceivers in Quads

- 4 TX / 4 RX
- PLLs in shielded transceiver quads
- QPLL modelled as a separate block

Layout

- Arranged in columns on one or both sides of the chip.
- Virtex-7: full transceiver columns
- Kintex-7: mix Transceivers and IOs in the same column
- Artix-7: transceivers at top and bottom (wire bond chip)

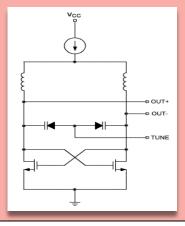
7 Series Architecture Block Diagram of a Single Channel (GTX)


> Key Features:

- Data paths:
 - 0G~12.5G* for GTX
- Equalization:
 - TX Pre/Post Emphasis
 - RX AGC
 - RX CTLE
 - RX DFE
- Debug/Test
 - Hard Logic PRBS gen/check
 - 2D Eye-Scan

* 0G – 0.499G requires XAPP 875

Oscillator Topology – The Right Choice


Ring Oscillator

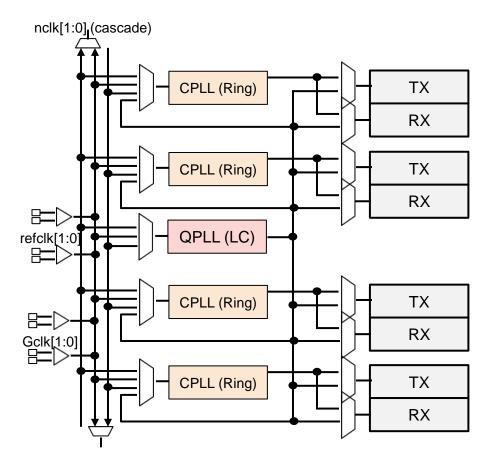
$$freq = \frac{1}{n^*(BuffDelay)}$$

- Wide frequency tuning Range
- Area & integration
- Poor Random jitter @ high rates
 - 1ps-3ps rms RJ @ 10G

> LC Tank Oscillator

LC Tank circuit layout (example)

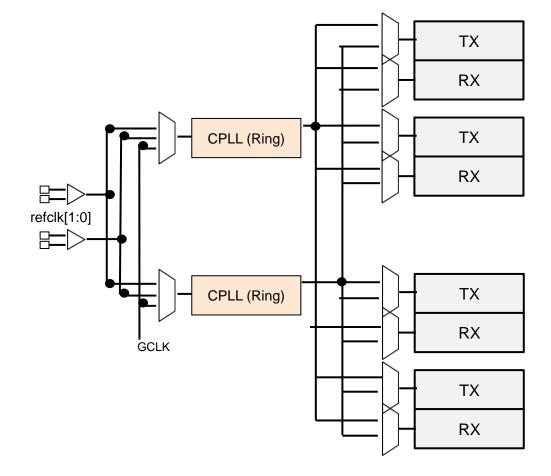
freq =
$$\frac{1}{\sqrt{LC}}$$


- Excellent phase noise / Jitter
 - 300fs-600fs rms RJ @10G
- Narrow tuning range
- Area and integration

PLL Type	GTP	GTX	GTH	GTZ
LC (Performance)		\checkmark		\checkmark
Ring (Flexibility)				

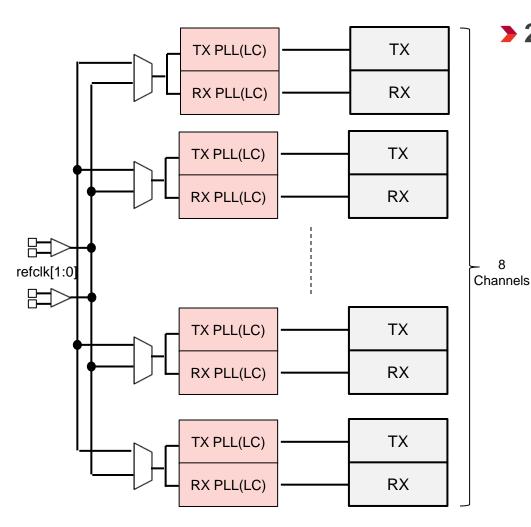
PLL Structure: 7-GTX/GTH

Virtex-7/Kintex-7


- One dedicated Ring PLL per channel, local TX/RX only
- Shared LC Tank PLL per Quad, drive ANY TX/RX
- + High Flexibility
- + Low Power
- + High Line Rates

PLL Structure: 7-GTP

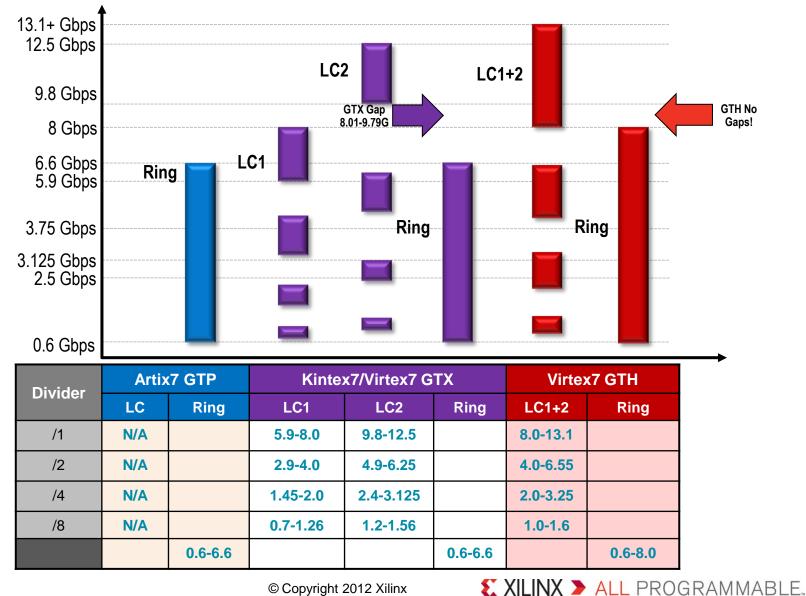
> Artix-7 Transceivers:


- 2 Ring PLLs per Quad, can drive ANY TX/RX
- No LC Tank PLLs

Moderate Flexibility

+ Low Power

PLL Structure: 7-GTZ



> 28G-focused PLL Architecture

- Dedicated LC tank PLL for TX/RX
- 2 Ref clocks per 8 channels
- No high speed muxing
- SFI-S skew alignment up to 8 channels

Divider	7 Series GTZ
Divider	Line Rate Range
/1	19.6 - 28.05
/2	9.8 - 14.025
/4	4.9 - 7.0
/8	2.4 - 3.5

7 Series Transceiver Architecture Line Rate Coverage (-3E speed grade)

7 Series Transceiver Architecture Major Supported Protocols

Market	Protocol	Artix-7 GTP	Kintex-7/Virtex-7 GTX	Virtex-7 GTH	Virtex-7 GTZ
General	PCI Express	Gen1, 2	Gen1, 2, 3	Gen1, 2, 3	(supported on GTH)
	Ethernet	1GE, 2.5GE, XAUI, RXAUI	1GE, 2.5GE, XAUI, RXAUI, 10GBase-R, 10G-KR*, 40GE, 100GE	1GE, 2.5GE, XAUI, RXAUI, 10GBase-R, 10G-KR (enhanced), 40GE, 100GE	100GE (25.7G)
	SONET/OTU	OC-3/12/48	OC-3/12/48/192, OTU1/2/3/4 OC-3/12/48/192, OTU1/2/3/4		OTU4 w 7% FEC (27.95G) SFI-S, OTL4.4
Wired	Interlaken	<= 6.6G	<=6.5G, 10.3125G 12.5G	<=6.5G, 10.3125G, 12.5G	20.625G (2x10.3125), 25G (2x12.5G)
	Custom Backplane	<= 3.125G	<=6.5G, CEI-11-LR*	<= 6.5G, CEI-11LR (enhanced)	(supported on GTH)
	PON	BPON, GPON, GEPON (up to 1.25 BCDR)	BPON, GPON, GEPON, 10GEPON, 10GGPON (up to 2.5G BCDR)	BPON, GPON, GEPON, 10GEPON, 10GGPON	(supported on GTH)
Wireless	CPRI/OBSAI	0.614, 1.2, 2.4, 3.0, 4.9, 6.6	0.614, 1.2, 2.4, 3.0, 4.9, 6.14, 9.8, 12	0.614, 1.2, 2.4, 3.0, 4.9, 6.14, 9.8, 12	2.4, 3.0, 4.9, 6.0, 9.8, 19.6, 24
	Serial Rapid IO	Gen1, 2	Gen1, 2	Gen1, 2	(supported on GTH)
Audio	SDI	SD/HD/3G-SDI	SD/HD/3G-SDI/10G-SDI	SD/HD/3G/10G-SDI	(supported on GTH)
Video ²	DisplayPort*	1.6, 2.7, 5.4	1.6, 2.7, 5.4	1.6, 2.7, 5.4	(supported on GTH)
	QPI	Х	4.8, 6.4`	4.8, 6.4, 8.0, 9.6	(supported on GTH)
Other	Fiber Channel	1G, 2G	1G, 2G, 4G, 10G	1G, 2G, 4G, 8G, 10G	FC32 (28.05G), FC20, FC16, FC10
	SATA/SAS	1.5G, 3G, 6G	1.5G, 3G, 6G	1.5G, 3G, 6G	(supported on GTH)
	Aurora	Up to 6.6G	Up to 12.5G	Up to 13.1G	Up to 28.05G

*DisplayPort support is transmitter direction only Page 30 © Copyright 2012 Xilinx

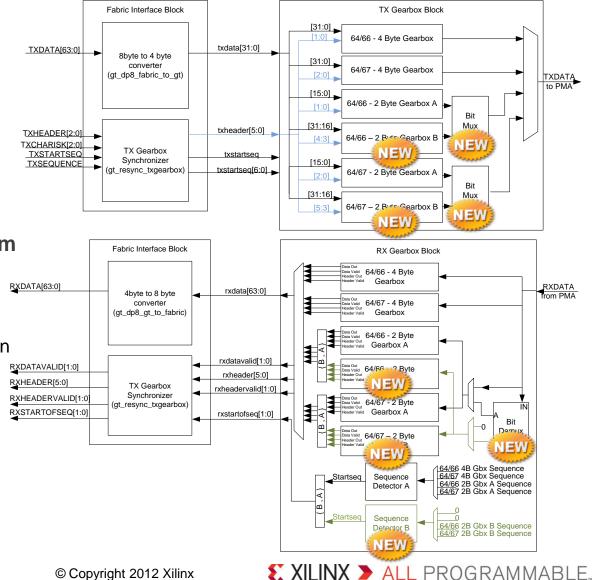
XILINX > ALL PROGRAMMABLE.

PCS Details Fabric Width vs. Line Rate

	Transceiver Min Fabric Width (bytes)				
Line Rate	GTP	GTX	GTH		
≤ 3.75G	2	2	2		
≤ 5.4G	4 (-2 wirebond)	2	2		
≤ 6.6G	4 (-2 flipchip)	2	2		
≤ 10.3125		4 (-2)	4 (-2)		
≤ 11.3		4 (-3E)	4 (-2E)		
≤ 12.5		4 (-3E)	4 (-2GE)		
≤ 13.1G			4 (-2GE)		

> Decoder Ring

- * = run length limited (see datasheet)
- ** = Gearbox and bit muxing (Interlaken, 10GE, 40GE and 100GE (GTH only) modes)
- *** = Different functionality from ** for 25G+ applications

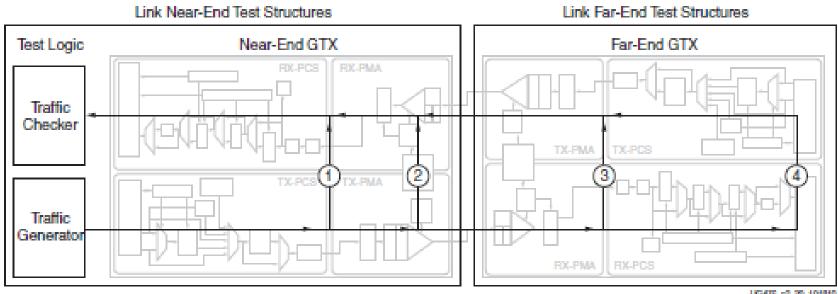

PCS Details **GTH PCS upgrades**

GTX PCS Features

- PRBS gen/check hard logic
- 8b/10b hard logic _
- 64/66 and 64/67 gearboxing hard logic
- Pass-through support for SONET/OTU and user-defined datapatterns

GTH PCS Enhancements in 28nm

- Native CAUI support for 100GE
 - 2x 5G PCS Lane inputs
 - PCS Lane Bit muxing
 - Second Sequence checker on RX
- (128/130b support is in PCIe Gen3 hard block)


PCS Details Encoding/Decoding Support

Fabric DIY	Hard GT Logic	Hard PCle Logic	GTP	GTX	GTH	GTZ
8b/10b			Yes	Yes	Yes	Yes
64/66b			Yes	Yes	Yes	Yes
64/67b			Yes	Yes	Yes	Yes
128/130b			No	Yes	Yes	TBD
SONET			Yes	Yes	Yes	Yes
Custom			Yes*	Yes*	Yes*	Yes*
	8b/10b		Yes	Yes	Yes	Yes
	64/66b		Yes**	Yes**	Yes**	Yes***
	64/67b		Yes**	Yes**	Yes**	No
	128/130b		No	No	No	No
		128/130b	No	No	Yes	No

> Decoder Ring

- * = run length limited (see datasheet)
- ** = Gearbox and bit muxing (Interlaken, 10GE, 40GE and 100GE (GTH only) modes)
- *** = Different functionality from ** for 25G+ applications

PCS Details Loopback (PCS and PMA)

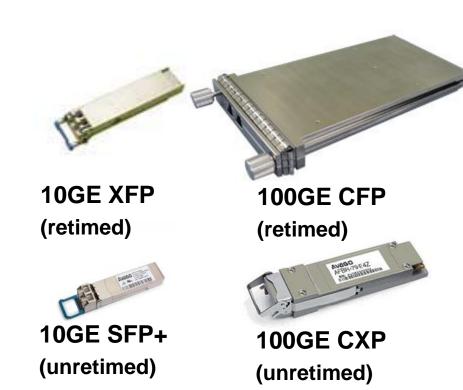
UG475 c2 20 101010

- > 7 Series Transceivers (GTP, GTX and GTH) Loopback
 - Both PCS and PMA loopbacks for near-end and far-end test cases
 - 1 --- Near-End PCS loopback
 - 2 --- Near-End PMA loopback
 - 3 --- Far-End PMA loopback
 - 4 --- Far-End PCS loopback

EXILINXALL PROGRAMMABLE

Xilinx 7 Series Transceiver Optical Support

Optical Interfaces Optics Basics


> Types of Optics

– Retimed

- (e.g. XFP)
- More margin for system (e.g. FPGA)
- Higher cost
- Follow "Limiting" specifications
- Unretimed
 - (e.g. SFP+)
 - System must be higher performance
 - Lower cost/smaller/lower power
 - 2 Types: Limiting or Linear

> Transceiver Parameters Needed for Optical Interfaces

- Low Transmit Jitter (frequently < 0.28UI)
- Good Jitter Tolerance (to work around optical dispersion)

XILINX > ALL PROGRAMMABLE.

SFP+ Dominating Optical Questions

- SFP+ is becoming the default standard for a single 10Gb/s+ optical lane
- **>** Single duplex lane: 1 RX, 1 TX
- > Electrical defined in SFF-8431 (SFI)
- > Protocol Applications
 - 10G-Base R: SR, LR, LRM, ER, ZR
 - Commonly used as reference!
 - CPRI: 9.8Gb/s
 - FibreChannel
 - 10G-SDI
- > Non-protocol specific...

Available Data

> Characterization:

- 7 series GTX SFP+/XFP Characterization Report
 - Tests to the SFF-8431 specification for limiting interfaces
 - Final Internal characterization report available upon request
- 7 series GTH SFP+/XFP Characterization Report
 - Tests to the SFF-8431 specification for limiting interfaces
 - Full Schedule published on Monthly Update

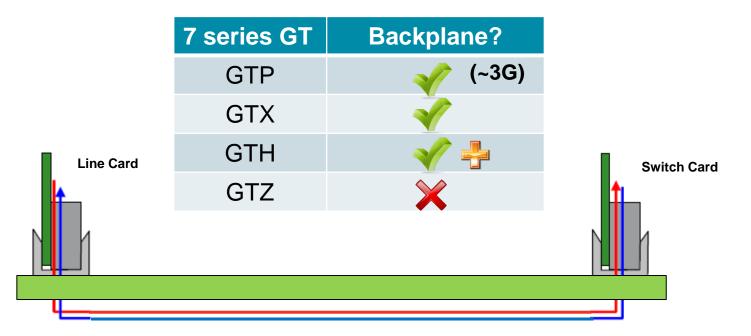
> Interoperation:

- 7 series GTX Interoperation with Finisar 40km/80km Limiting Optics
 - Contact Technical Marketing

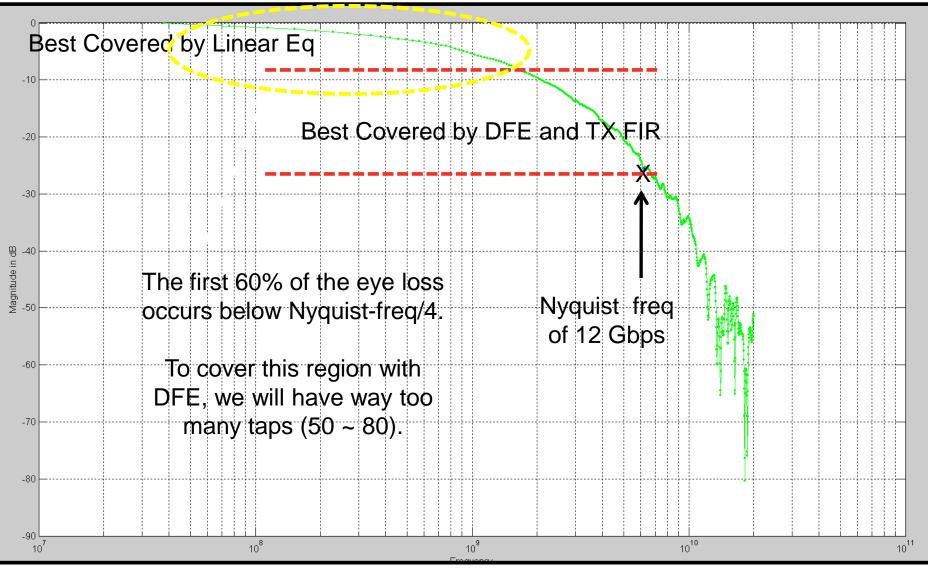
Programmable Systems Integration

Performance and Operation Qualified with Industry Leaders

XILINX > ALL PROGRAMMABLE.


EXILINXALL PROGRAMMABLE

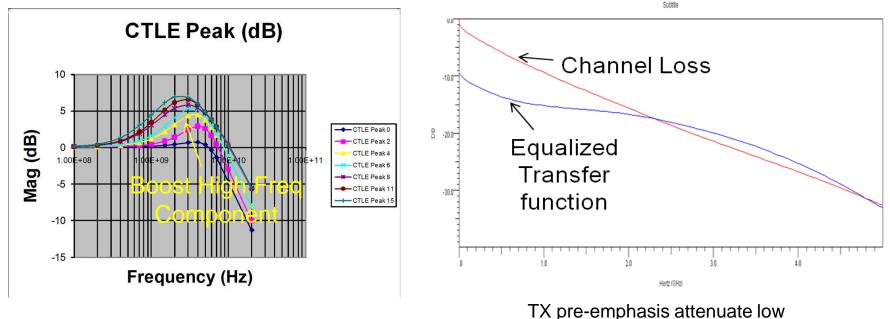
Xilinx 7 Series Transceiver Backplane & Equalization



Backplanes Support with 7 Series Transceiver

- >7-GTX is designed to support 10GBase-KR (well-designed high confidence channels)
- > 7-GTH will provide enhanced 10GBase-KR support
- > 7-GTP will support custom backplane up to 3.125Gbps
- > 7-GTZ will support CEI-28G VSR but not backplane applications

Why We Use Both Linear and DFE in 7 Series?

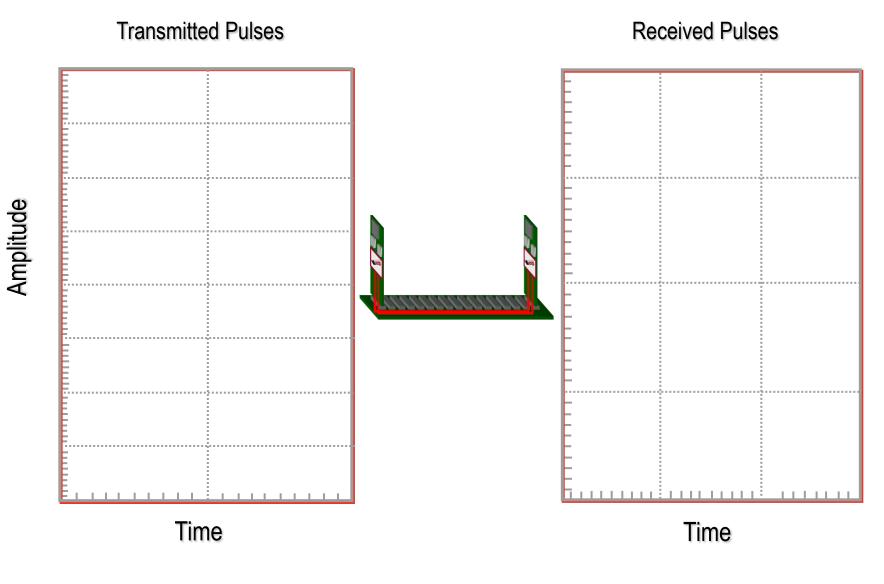


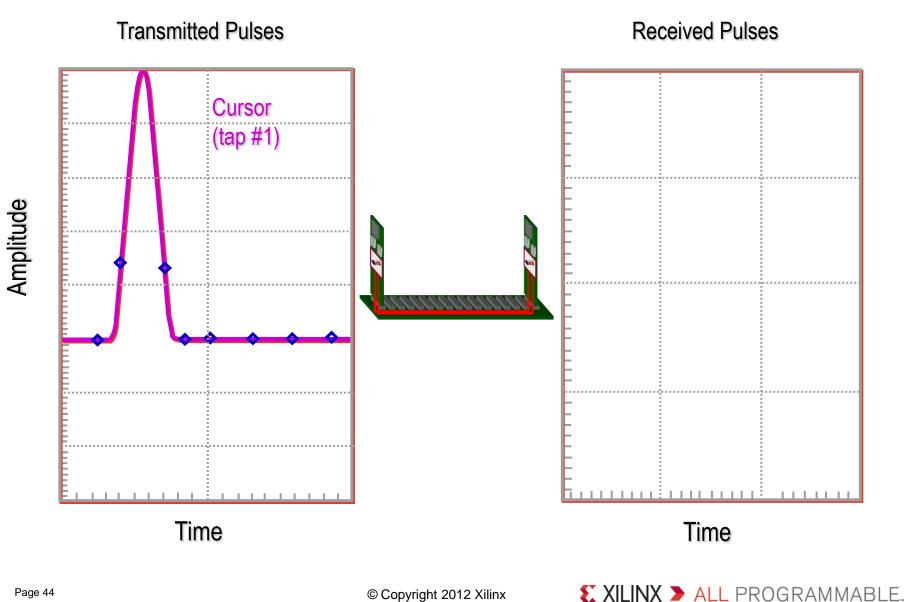
🐮 XILINX 🕨 ALL PROGRAMMABLE.

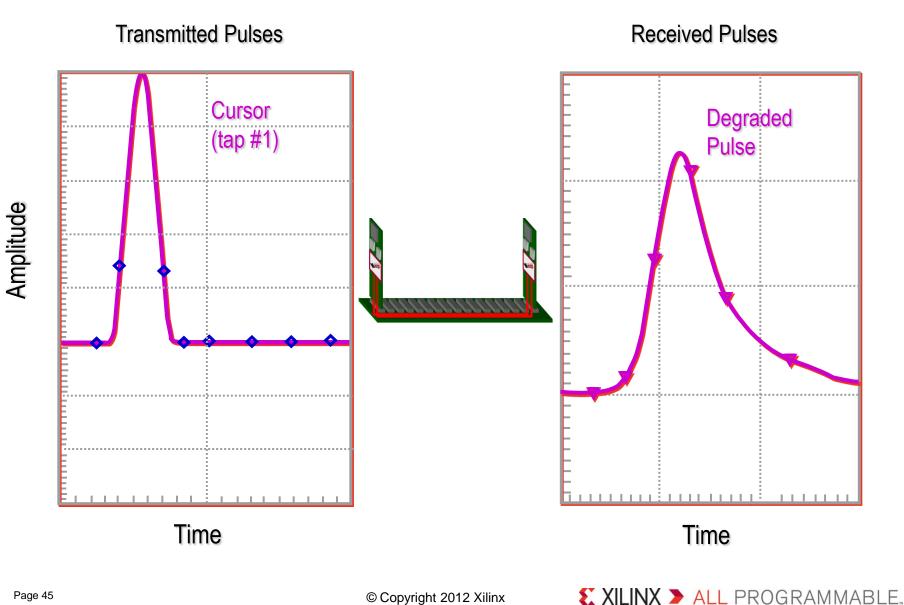
Technique #1: Linear Equalization

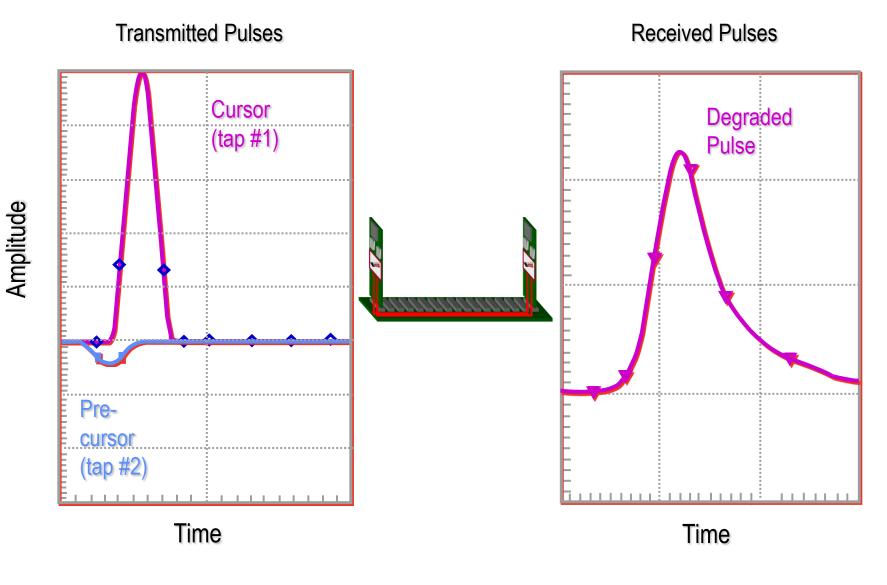
Linear Equalization

- Transmitter: Attenuate low frequency and/or boost high frequency
- Receiver: Boost high frequency
- Compensate insertion loss
- Limitation: Boost high frequency noise

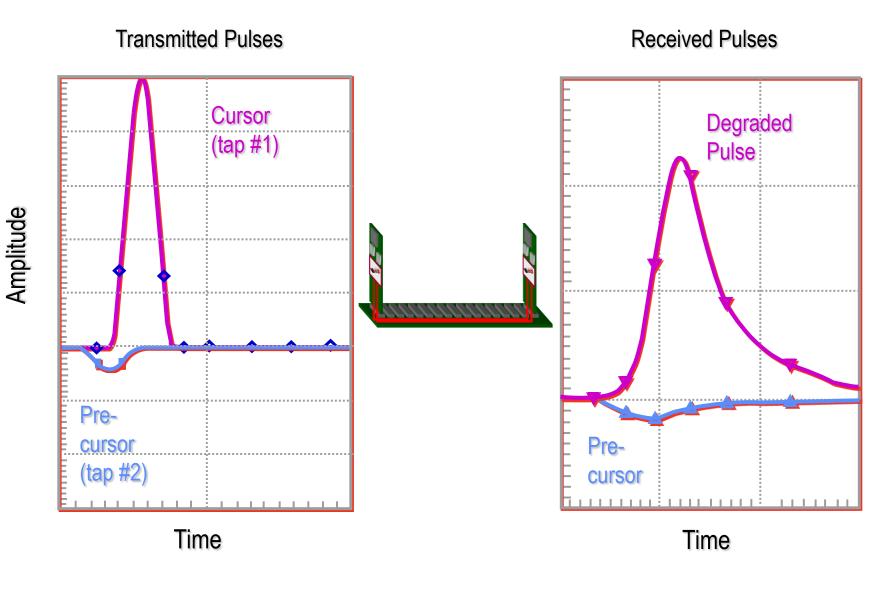


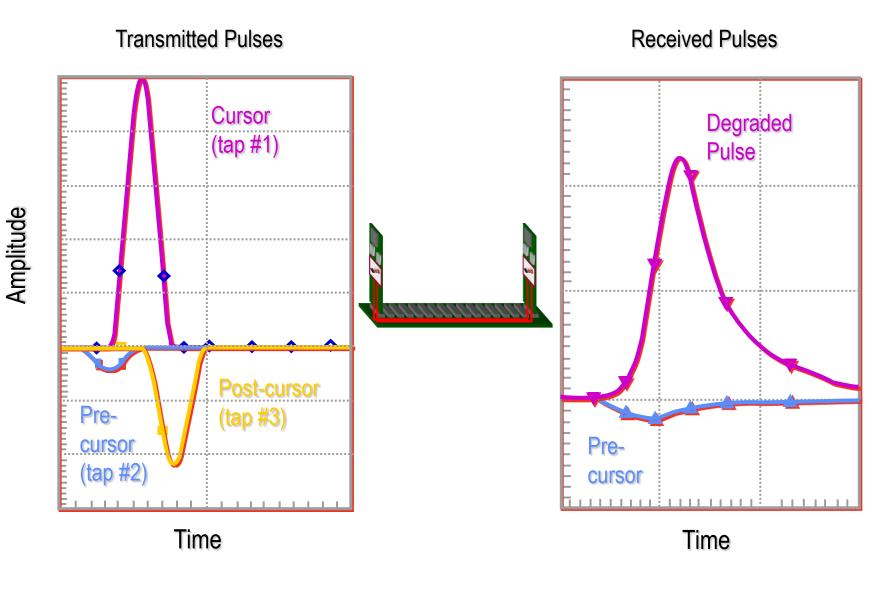

RX linear equalizer frequency response

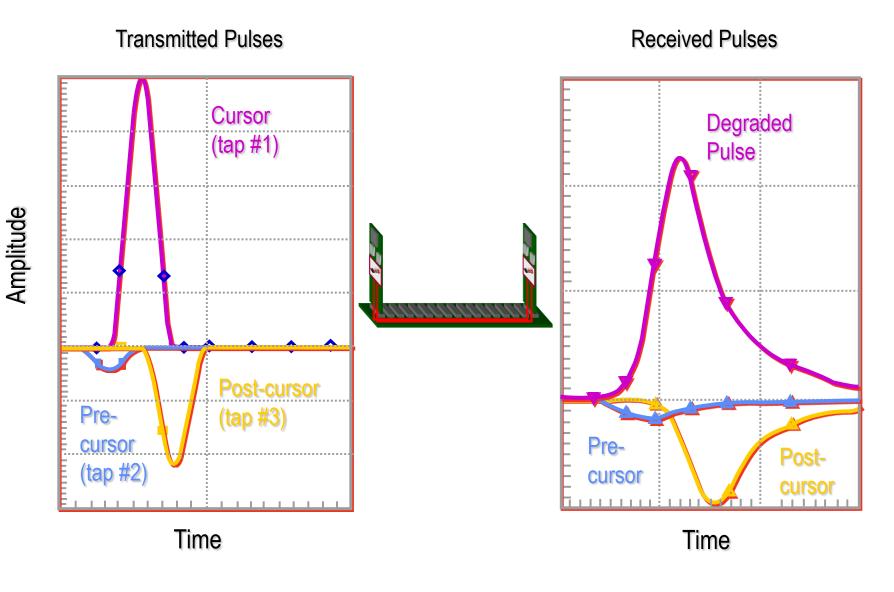

frequency & boost high frequency

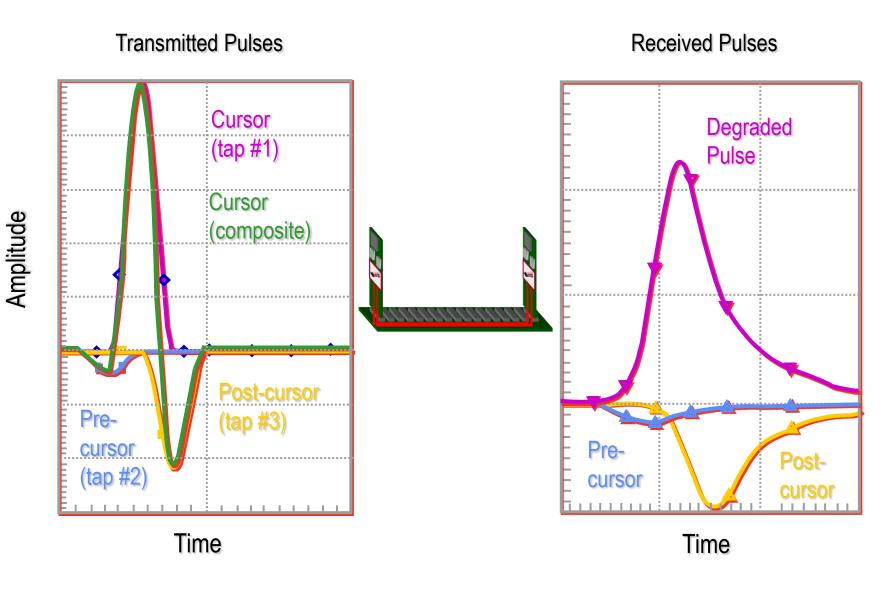

XILINX > ALL PROGRAMMABLE.

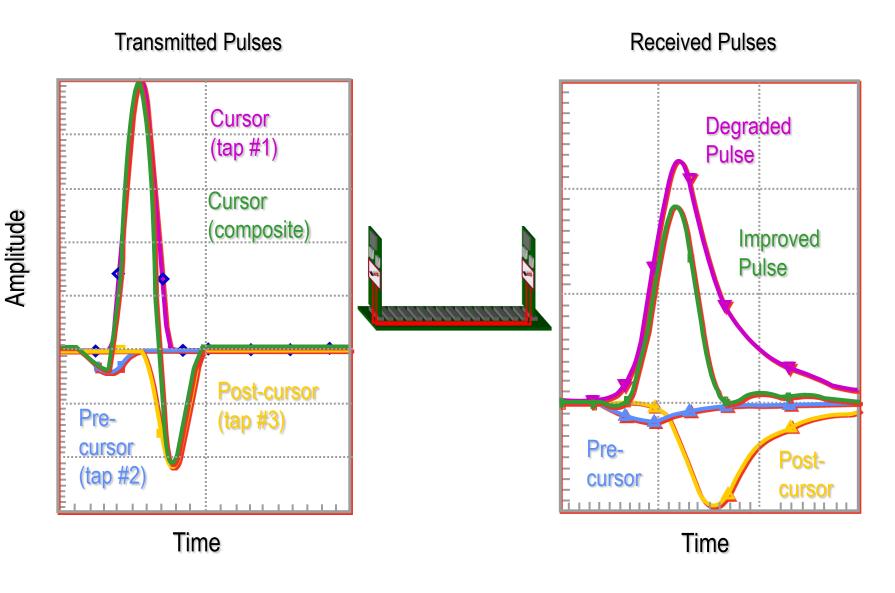
Transfer Function








XILINX ➤ ALL PROGRAMMABLE.



XILINX ➤ ALL PROGRAMMABLE.

7 Series TX Driver Structure With 3 Tap Emphasis

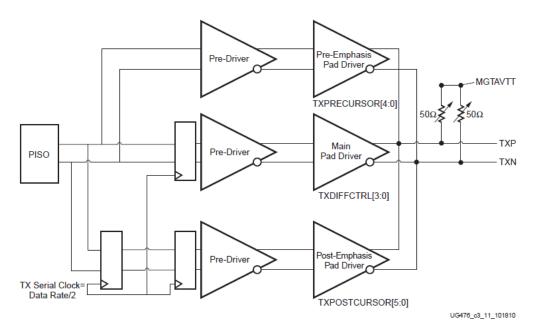
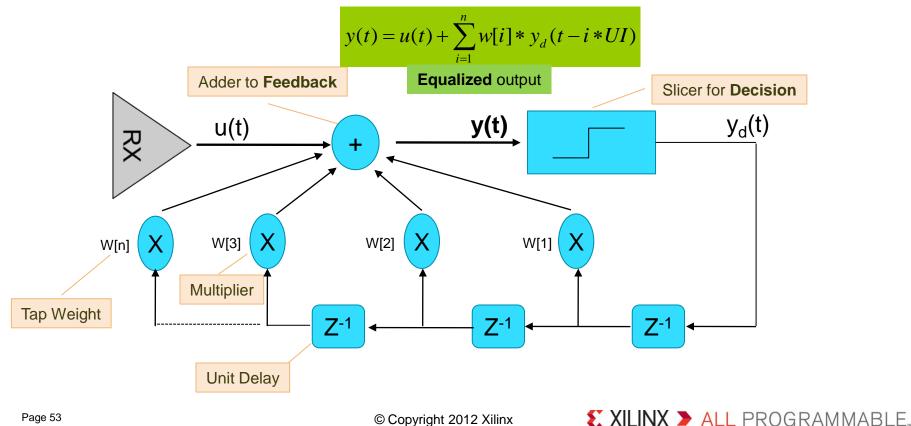


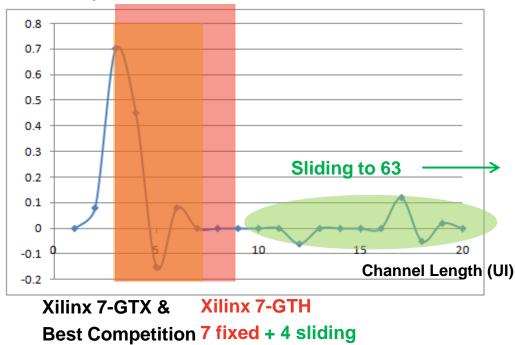
Figure 3-11: TX Configurable Driver Block Diagram

7 Series Serdes	GTP	GTX	GTH	GTZ
Main Cursor	Yes	Yes	Yes	Yes
Post Cursor De-Emphasis	Yes	Yes	Yes	NDA
Pre Cursor De-Emphasis	Yes	Yes	Yes	NDA
10G-KR Backplane TX	NA	Yes	Yes	No


© Copyright 2012 Xilinx

XILINX > ALL PROGRAMMABLE.

Technique #2: Decision Feedback Equalization


Decision Feedback Equalization (DFE)

- A nonlinear equalizer that uses previous symbols to eliminate the Inter-Symbol-Interference (ISI) on current symbol.
 - The ISI on current symbol, caused by previous symbols, is subtracted by DFE.

Backplane and Equalization 7 Series GTH: Advanced DFE

- > Several DFE taps compensate reflections in short distance
 - 5 tap @ 10Gbps => ~1.5 inch
- > Virtex-7 GTH DFE
 - 7 fixed taps + 4 sliding taps (up to 63)
 - Compensates 10x distance of reflection with auto adaptation

Pulse Response

10G Backplane Support with 7 Series Competitive Position

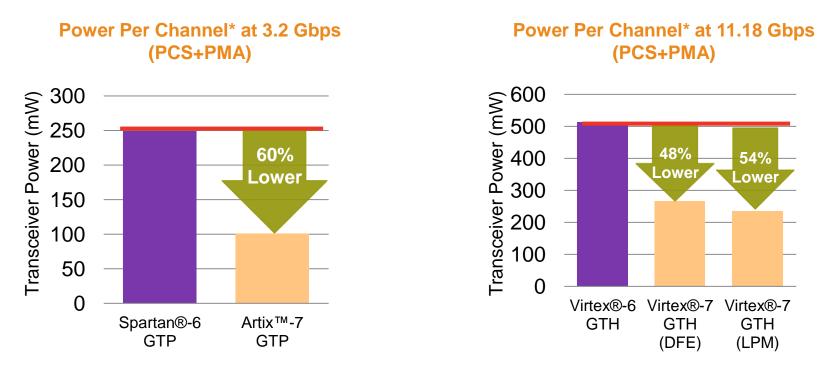
Parameter	Best 28nm FPGA Competitor	7-GTX	7-GTH
Jitter @ 10Gb/s+	\times	\times	
TX FIR	Yes	Yes	Yes
RX Linear EQ (CTLE)	16dB	Up to 20dB	Up to 20dB
RX DFE #taps	5 fixed	5 fixed	7 fixed + 4 sliding -> tap 63
RX DFE Adaptation	Adaptive	Fully Adaptive (proven)	Fully Adaptive(proven)
2-D EyeScan	Yes	Yes(proven)	Yes (proven)
10G Backplane	Well-designed high confidence channel	Well-designed high confidence channel	Enhanced KR support for tough backplanes

Low cost 7-GTX has superior jitter performance and better equalization capability as best competitor

7-GTH has the BEST KR support in FPGA industry

Page 55

© Copyright 2012 Xilinx


XILINX > ALL PROGRAMMABLE.

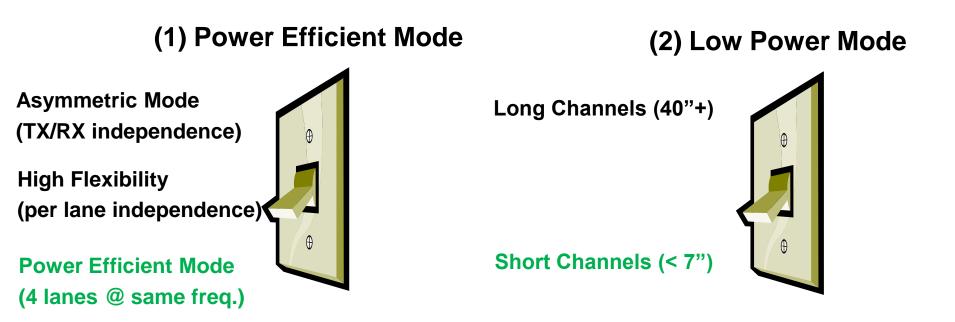
EXILINXALL PROGRAMMABLE

Xilinx 7 Series Transceiver Power Advantage

7 Series Re-Architected Transceivers

* Based on four transceivers and low power modes in XPE 14.1 for Virtex-7 & Artix-7 and XPE13.1 for Virtex-6 and Spartan-6

Artix-7 GTP

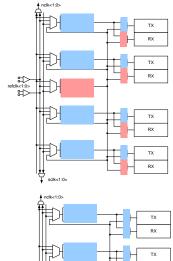

Focus: absolute lowest power / cost
Up to 6.6 Gbps

Virtex-7 XT GTH

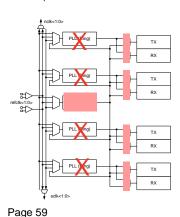
- >Focus: high-bandwidth
- >Up to 96 channels
- Up to 13.1 Gbps, advanced features (10G KR, etc.)

Saving Power with 7 Series Transceivers Overview

In addition to our choice of TSMC's HPL process to offer 50% lower power FPGA logic than previous generation, we offer 2 programmable power-saving options for GTX/GTH transceivers.


Trade off Flexibility for Power

Trade off Trace Length for Power


XILINX > ALL PROGRAMMABLE.

(1) Power Efficient Mode

Saving Power with 7 Series Transceivers Power Efficient Mode

> Asymmetric Mode

- Use both LC and Ring Osc.
- TX and RX can operate at a separate speed/protocol (see prev. slide)
- Allows Full Density SDI on FJ2
- => 1.33x higher power for max TX/RX flexibility
- High Flexibility Mode
 - Each Transceiver on local Ring Oscillator
 - LC Tank powered down
 - Each Transceiver can operate at a separate speed/protocol
 - => 1.25x higher power for per-channel flexibility
- Power Efficient Mode
 - Everything on LC Tank (1 PLL/quad)
 - Ring Oscillators Powered Down
 - All 4 Transceivers running at the same rate (/1, /2, /4, /8)
 - Most common use case
 - CDR can pull in plesiochronous differences
 - => 1.0x Lowest power but lowest flexibility

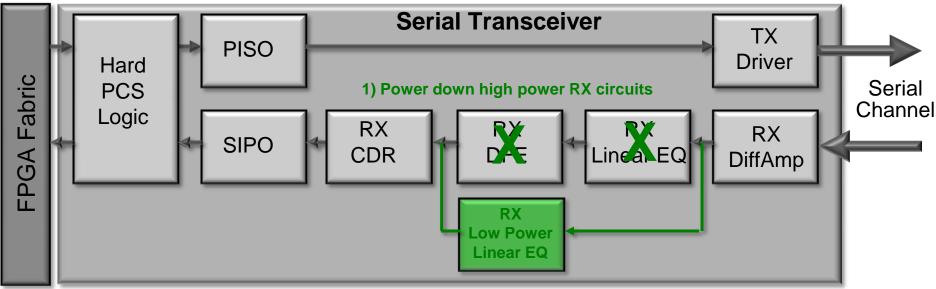
for "easy" chip-to-chip channels Currently define "easy" as 7" with no connector (feedback welcome)

customers

Saving Power with 7 Series Transceivers Low Power Mode (LPM)

- Customer Transceiver Use Models: > Low Power Mode is: Special power-optimized circuitry
 - Chip-to-Optics
 - Chip-to-Chip
 - Backplane
- Increasing # of Chip-to-Chip

XILINX > ALL PROGRAMMABLE.


Power Mode

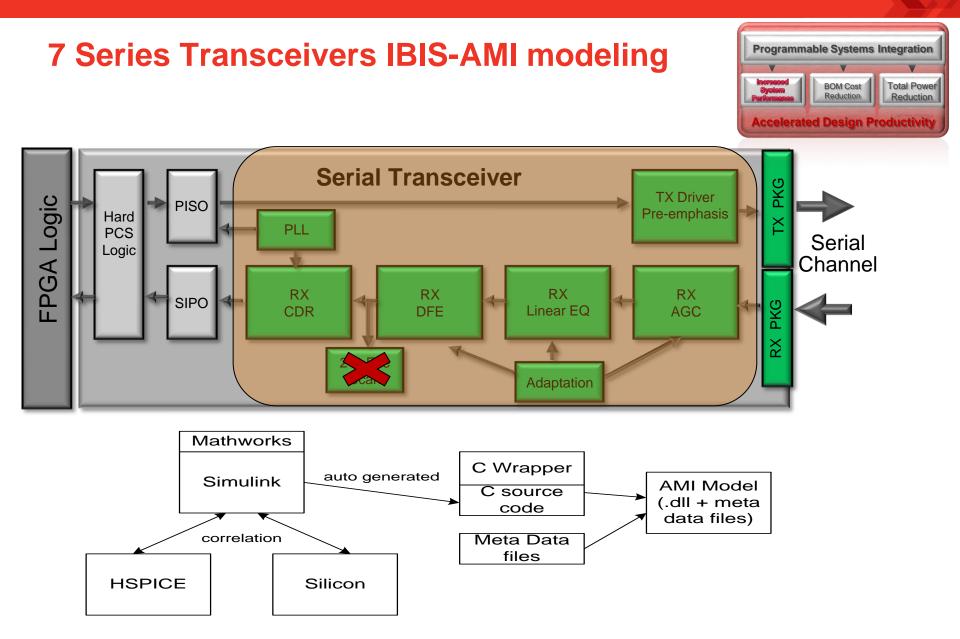
(2) Low

2) Use lower swing TX driver

Saves 10%-15% power/lane

Xilinx 10G Transceiver Feature Evolution:

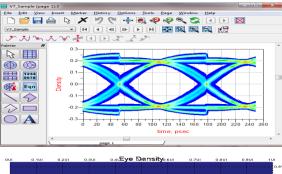
	V6-GTH	7-GTX	7-GTH
Max Line rate	11.182 (-3)	12.5Gbps (-3)	13.1Gbps (-3)
LC PLL Freq Range	4.96-5.591GHz	5.93-8GHz 9.8-12.5GHz	8-13.1GHz
Ring PLL Freq Range	N/A	1.6-3.3GHz	1.6-4GHz
Total RX DFE taps	3	5	11
RX Channel Loss Compensation	8dB	24dB	24dB
RX DFE Sliding taps (to cancel reflections)	None	None	Last 4 taps can slide up to 63 UIs
Termination Calibration	No	Yes	Yes
Baseline wander cancellation	Νο	Yes	Yes
Per-slicer offset cancellation	No	No	Yes
RX AGC	Partial	Yes	Yes
TX FIR taps	Pre, Main, Post	Pre, Main, Post	Pre, Main, Post
TX Amplitude control	16 choices	16 choices	16 choices

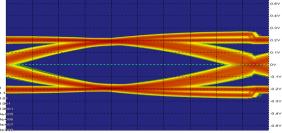

EXILINXALL PROGRAMMABLE

Xilinx 7 Series Transceiver Modelling and Simulation

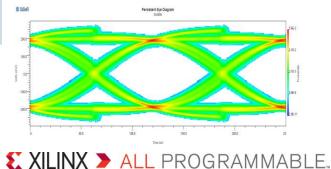
Transceiver Modeling for Link Budget Analysis IBIS-AMI instead of HSPICE

Feature	HSPICE	IBIS-AMI
Model blocks	TX driver with pre-emphasis RX buffer with CTLE & AGC	HSPICE blocks + DFE, CDR & Adaptation (CTLE, DFE & AGC)
Speed	Slow Days/Weeks for 1M bit simulation	Fast Minutes for 1M bit simulation
Accuracy	High Transistor level extraction	Medium-High Behavior model correlated to HSPICE/Hardware

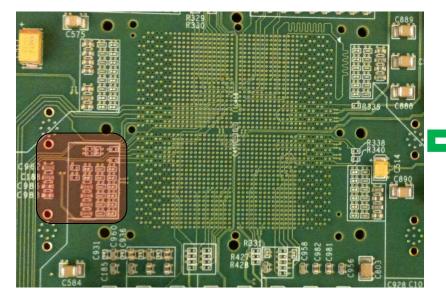



> PMA blocks are modeled with the same algorithm as silicon

7 Series Transceiver IBIS-AMI EDA Tool Compatibility


EDA Tool	7 series
Agilent Advanced Design System	Yes
ANSYS Ansoft Designer	Yes
Cadence Allegro PCB SI & PI	Yes
Mentor Graphics HyperLynx	Yes
Sigrity System SI Channel Designer	Yes
SiSoft Quantum Channel Designer	Yes
Synopsys HSPICE	Yes

Note: Listed in Alphabetic order



ALL PROGRAMMABLE


Power Integrity 7 Series Transceivers

Decoupling Capacitors for MGT Power Rails

0.75" x 0.75" space of decoupling caps for transceivers per group on printed circuit board **AVTT & AVCC Caps**

Decoupling capacitors in 7 Series package substrates

Power Integrity Simulation XC7VX485T-FF1761 - Xilinx WP411

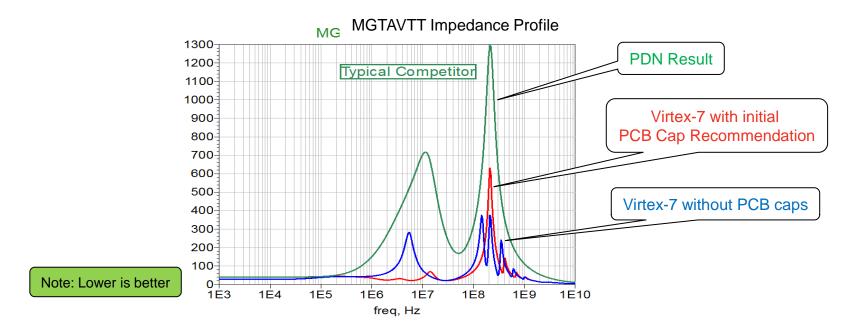
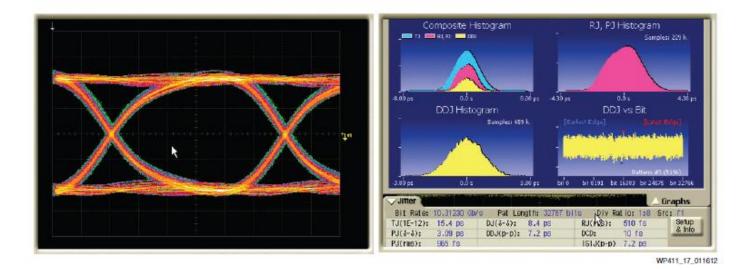


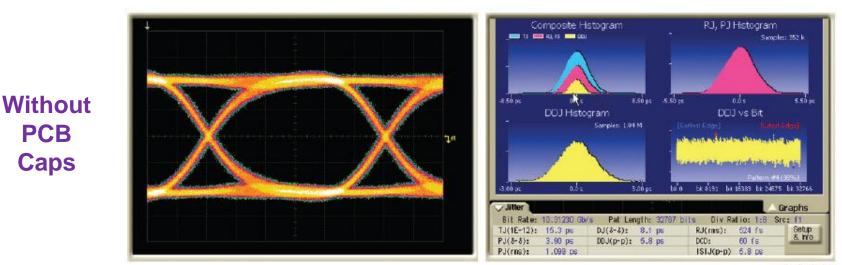
Table 2: Case 1 Capacitors

QTY per Group			Capacitance
MGTAVCC	MGTAVTT	MGTVCCAUX	Capacitance (µF)
4	4	2	0.022
4	4	0	0.47
2	2	1	1
2	2	1	4.7

Table 3: Case 2 Capacitors

QTY per Group		Capacitance	
MGTAVCC	MGTAVTT	MGTVCCAUX	(μF)
0	0	0	0.022
0	0	0	0.47
0	0	0	1
0	0	0	4.7





Power Integrity Measurement 7-GTX TX Eye: PRBS15 @ 10.3125Gb/s

WP411_18_011612

XILINX > ALL PROGRAMMABLE.

© Copyright 2012 Xilinx

PCB

Caps

ALL PROGRAMMABLE

Xilinx 7 Series Transceiver Tools

Transceiver Tools A Note on Tools and Usability

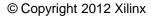
> Xilinx IP cores

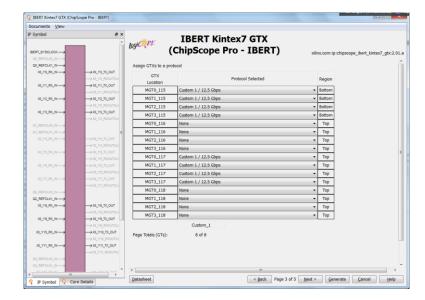
- Encapsulate the transceiver in the IP cores
- Eg: PCIe, 10GE, Interlaken, CPRI, SDI, etc.

> Xilinx Transceiver Wizard

- Pre-configured settings for common protocols
- GUI-based customization for customer protocols
- Performs clocking and other transceiver connectivity DRCs

> Xilinx Chipscope IBERT


- Integrated Bit Error Rate Tester
- Hardware evaluation of customized channel
- In-system debug to help system bring-up
- IBERT on 2 different FPGAs controlled from one



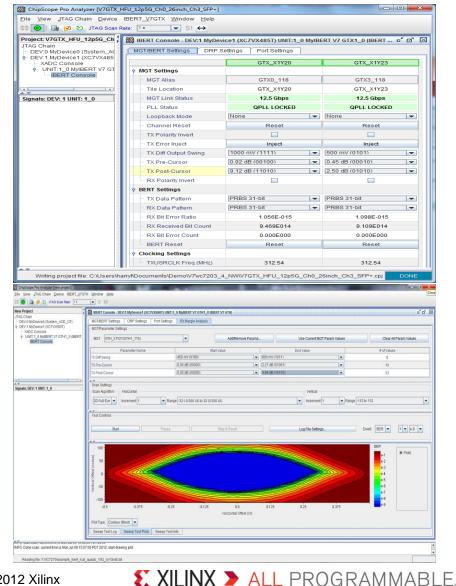
Page 71

Accelerated Design Productivity

IP and Tools to Simplify Design Entry and Verification

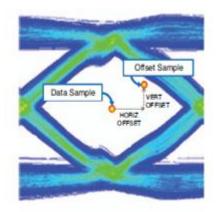
IBERT Generator GUI

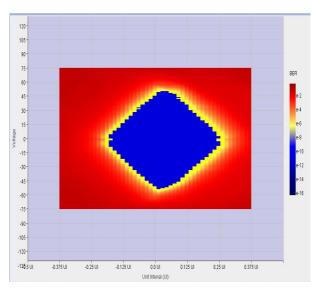
XILINX > ALL PROGRAMMABLE.


Transceiver Tools IBERT – Runtime GUI

> Key Features

- Link Status
- Hardware PRBS Generator/Checker
- TX Swing and TX Pre-emphasis adjustment
- Attributes and Port setting in advanced tabs


> On-chip Margin Analysis


- Choice of 1-D or 2-D
- Choice of resolution
- Choice of target BER
- System tuning made easy with parameter sweeping

System Analysis with Eye Scan Non-Destructive On-Chip Debug

- Internal Scan History in Xilinx
 - Multi-generations of 1-D BER plot
- > Two Samplers in RX Path
 - Data Sampler at the eye center
 - Moveable Offset Sampler
 - Compare two samplers
 - 2-D BER Eye built from error location
- > Eye Scan inside receiver on live data
 - Non-destructive
 - Post equalization
 - BER Measurement
 - 2-D Plot

Features	7 Series Eye Scan
Horizontal Taps	64 at max rate, up to 512
Vertical Taps	256
Diagnostic Tool	IBERT

ALL PROGRAMMABLE

Xilinx 7 Series Product Table

© Copyright 2012 Xilinx

Artix-7 FPGA Family Table Artix-7 Product Table

A HILL Z EDGA

Subject to Change

			Artix-7 FPGAs Optimized for Lowest Cost and Power with Smal (1.0V, 0.9V)	I Form-Factor Packaging for Highest Volume Applicatio
		Part Number	XC7A100T	XC7A200T
	Slices		15,850	33,650
Logic Resources		Logic Cells	101,440	215,360
		CLB Flip-Flops	126,800	269,200
	Maximum Distributed RAM (Kbits)		1,188	2,888
Memory Resources	Block RAM/FIFO w/ ECC (36Kbits each)		135	365
		Total Block RAM (Kbits)	4,860	13,140
Clock Resources	C	CMTs (1 MMCM + 1 PLL)	6	10
I/O Resources	Maximum Single-Ended I/O ⁽⁴⁾		300	500
I/O Resources	Maximum Differential I/O Pairs ⁽⁴⁾		144	240
	DSP48E1 Slices		240	740
Embedded	PCI Express® ⁽¹⁾		1	1
Hard IP	Agile Mixed Signal (AMS) / XADC		1	1
Resources	Configuration AES / HMAC Blocks		1	1
	GTP 5.	.4 / 6.6 Gb/s Transceivers	8	16
	Commercial		-1, -2	-1, -2
Speed Grades	Extended		-2L, -3	-2L, -3
		Industrial	-1, -2	-1, -2
Configuration	Con	figuration Memory (Mbits)	29.3	62.4
	Package ⁽³⁾	Dimensions (mm)		Available User I/O: 3.3V SelectIO™ Pins (GTP Transceivers)
Т	CSG324	15 x 15	210 (0)	
5.4G I	FTG256	17 x 17	170 (0)	
	SBG484	19 x 19		285 (4)
Footprint	FGG484 ⁽²⁾	23 x 23	285 (4)	
^{Co} Cotte	FBG484 ⁽²⁾	23 x 23		285 (4)
Footprint	FGG676 ⁽²⁾	27 x 27	300 (8)	
Compatible	FBG676 ⁽²⁾	27 x 27		400 (8)
	FFG1156 ⁽²⁾	35 x 35		50 ((16)

Up to 16 GTP Transceivers

XILINX > ALL PROGRAMMABLE.

© Copyright 2012 Xilinx

Kintex-7 FPGA Family Table

Subject to Change

Kintex-7 Product Table

		0	intex-7 FPGAs ptimized for Best Pr I.0V, 0.9V)	ice-Performance					
		Part Number	XC7K70T	XC7K160T	XC7K325T	XC7K355T	XC7K410T	XC7K420T	XC7K480T
	EasyPath™ C	ost Reduction Solutions ⁽¹⁾	-	-	-	XCE7K355T	XCE7K410T	XCE7K420T	XCE7K480T
	Silces		10,250	25,350	50,950	55,650	63,550	65,150	74,650
Logic Resources	Logic Cells		65,600	162,240	326,080	356,160	406,720	416,960	477,760
		CLB Flip-Flops	82,000	202,800	407,600	445,200	508,400	521,200	597,200
	Maximum	n Distributed RAM (Kblts)	838	2,188	4,000	5,088	5,663	5,938	6,788
Memory Resources	Block RAM/FIF	O w/ ECC (36Kbits each)	135	325	445	715	795	835	955
		Total Block RAM (Kbits)	4,860	11,700	16,020	25,740	28,620	30,060	34,380
Clock Resources	(CMTs (1 MMCM + 1 PLL)	6	8	10	6	10	8	8
10 5	Maximum Single-Ended I/O		300	400	500	300	500	400	400
I/O Resources	Maxdr	Maximum Differential I/O Pairs		192	240	144	240	192	192
	DSP48E1 Slices		240	600	840	1,440	1,540	1,680	1,920
Embedded Hard IP Resources	PCI Express® ²¹		1	1	1	1	1	1	1
	Agle M	xed Signal (AMS) / XADC	1	1	1	1	1	1	1
	Configura	ation AES / HMAC Blocks	1	1	1	1	1	1	1
	GTX 12.5 Gb/s Transcelvers		8	8	16	24	16	32	32
		Commercial	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2
Speed Grades		Extended		-2L, -3	-2L, -3	-2L, -3	-2L, -3	-2L, -3	-2L, -3
		Industrial	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2
	Package ⁽⁴⁾	Dimensions (mm)	Available User I/O: 3.3V SelectiO TM Pins, 1.8V SelectiO Pins (GTX Transceivers)						
	FBG484	23 x 23	185, 1 d (4)	185, 100 (4)					
6.6GFootpart	FBG676	27 x 27	200, 100 (8)	250, 150 (8)	250, 150 (8)		250, 150 (8)		
Compatible	FFG676	27 x 27		250, 150 (8)	250, 150 (8)		250, 150 (8)		
Footprint	FBG900	31 x 31			350, 150 (16)		350, 150 (16)		
2.5G ^{compatible}	FFG900	31 x 31			350, 150 (16)		350, 150 (16)		
	FFG901	31 x 31				300, 0 (24)		380, (28)	380, 0 (28)
	FFG1156	35 x 35						400,0 (32)	400, 0 (32)
V	FBG 1 0mm Lidess	flo-chip: FFG: 1.0mm Flip-cl	hin fine-olich						XMP085 (

© Copyright 2012 Xilinx

FBG 1.0mm Lidless flip-chip; FFG: 1.0mm Flip-chip fine-pitch

Notes: 1. EasyPath™ solutions provide a fast and conversion-free path for cost reduction.

2. Hard block supports PCI Express Base 2.1 specification at Gen1 and Gen2 data rates. Gen3 supported with soft IP.

4~32 GTX Transceivers

Leaded package options ("FExox" or "FExox") available for the following Kintex-7 devices: XC7K160T, XC7K325T, XC7K355T, XC7K410T, XC7K420T, XC7K480T

4. Preliminary product information, subject to change. Please contact your Xilinx representative for the latest information.

Virtex-7T and XT FPGAs

Subject to Change

Virtex-7 Product Table

			Virtex-7 FP(
	Optimized for Highest System Performance and Capacity										
		Part Number	(1.0V, 0.9V) XC7V585T	XC7V2000T	XC7VX330T	(1.0V, 0.9V) XC7VX415T		XC7VX550T	XC7VX690T	XC7VX980T	XC7VX1140T
	FacyDath TM	Cost Reduction Solutions ⁽¹⁾	XCE7V585T	XCE7V2000T	XCE7VX330T	XCE7VX415T	XCETVX485T	XCETVX550T	XCE7VX690T	XCETVX980T	XCE7VX1140T
	Labyraal	Slices	91.050	305,400	51,000	64,400	75,900	86.600	108,300	153,000	178.000
Logic Resources		Logic Cells		1,954,560	326,400	412,160	485,760	554,240	693,120	979,200	1,139,200
		CLB FID-FIODS		2,443,200	408.000	515,200	607,200	692,800	866.400	1,224,000	1,424,000
	Maximu	Maximum Distributed RAM (Kbits)		21,550	4.388	6.525	8.175	8.725	10.888	13.838	17,700
Memory	Block RAWFIFO w/ ECC (36Kbits each)		795	1,292	750	880	1,030	1,180	1,470	1,500	1,880
Resources		Total Block RAM (Kbits)	28.620	46,512	27,000	31,680	37,080	42,480	52,920	54,000	67,680
Clocking		CMTs (1 MMCM + 1 PLL)	18	24	14	12	14	20	20	18	24
		Maximum Single-Ended I/O	850	1,200	700	600	700	600	1,000	900	1100
I/O Resources		kimum Differential I/O Pairs	408	576	336	288	336	288	480	432	528
		DSP48E1 Silces	1,260	2,160	1,120	2,160	2,800	2,880	3,600	3,600	3,360
	Gen2 PC	Gen2 PCI Express Interface Blocks		4	-	-	4	-	-	-	-
	Gen3 PCI Express Interface Blocks		_	-	2	2	-	2	3	3	4
Embedded	Aglie N	Aglie Mixed Signal (AMS) / XADO		1	1	1	1	1	1	1	1
Hard IP Resources	Configu	Configuration AES / HMAC Blocks		1	1	1	1	1	1	1	1
	GT	GTX 12.5Gb/s Transcelvers ⁽³⁾		36	-	-	56	-	-	-	-
	GT	GTH 13.1Gb/s Transcelvers ⁽³⁾		-	28	48	-	80	80	72	96
	GT	GTZ 28.05Gb/s Transceivers		-	-	-	-	-	-	-	-
	Commercial		-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2
Speed Grades	ades Extended ⁴⁰ Industrial		-2L, -3	-2L, -2G	-2L, -3	-2L, -3	-2L, -3	-2L, -3	-2L, -3	-2L	-2L, -2G
			-1, -2	-1	-1, -2	-1, -2	-1, -2	-1, -2	-1, -2	-1	-1
Configuration	Cor	nfiguration Memory (Mbits)	153.9	426.6	106.1	131.5	154.7	219.2	219.2	269.4	367.2
	Package ⁽³⁾	Area		Available L	lser I/O: 3.3V Se	lectiO [™] Pins, 1.	8V SelectiO Pin	s (GTX, GTH Tr	anscelvers)		
	Flip chip, fine pitch 8	BGA (1.0 mm ball spacing)									
	FFG1157	35 x 35 mm	0, 600 (20, 0)		0,600 (0,20)	0, 600 (0, 20)	0, 600 (20, 0)		0, 600 (0, 20)		
	FFG1761	42.5 x 42.5 mm	100, 750 (36, 0)		50, 650 (0, 28)		0,700 (28,0)		0, 850 (0, 36)		
Footprint Compatible	FLG1761	42.5 x 42.5 mm									
	FHG1761	45 x 45 mm		0, 857 (36, 0)	2	0~96 (GTX/C	5 I H tr	ansce	ivers	
	FLG1925	45 x 45 mm		0, 1200 (15.7)							
	FFG1158	35 x 35 mm				0, 350 (0, 48)	0, 350 (48, 0)	0, 350 (0, 48)	0, 350 (0, 48)		
Footprint	FFG1926	45 x 45 mm							0, 720 (0, 64)	0, 720 (0, 64)	
Compatible	FLG126~	364 ²⁹ TX ti	ansce	ivers							0, 720 (0, 64)
	FFG1927	45 x 45 mm				0, 600 (0, 48)	0,600 (56,0)	0, 600 (0, 80)	0, 600 (0, 80)		
Footprint	FFG1928	45 x 45 mm								0, 480 (0, 72)	
Compatible	FLG1928	45 x 45 mm									0, 48 (0, 96)
Footprint Compatible	FFG1930	45 x 45 mm					0,700 (24,0)		0, 1000 (0, 24)	0, 900 (0, 24)	0.1100/0.041
compatible	FLG1930	45 x 45 mm									0, 1100 (0, 24)

Virtex-7HT FPGAs

Virtex-7 Product Table

			(1.0V)		
		Part Number	XC7VH290T	XC7VH580T	XC7VH870T
	EasyPath™ C	ost Reduction Solutions ⁽¹⁾	-	-	-
Locia		Slices	44,375	90,700	136,900
Logic Resources		Logic Cells	284,000	580,480	876,160
		CLB Flip-Flops	355,000	725,600	1,095,200
Memory	Maximur	m Distributed RAM (Kbits)	4,425	8,850	13,275
Resources	Block RAM/FIF	O w/ ECC (36Kbits each)	470	940	1,410
		Total Block RAM (Kbits)	16,920	33,840	50,760
Clocking	(CMTs (1 MMCM + 1 PLL)	6	12	18
I/O Resources	M	aximum Single-Ended I/O	300	600	650
I/O Resources	Maxi	imum Differential I/O Pairs	144	288	312
		DSP48E1 Slices	840	1,680	2,520
	Gen2 PC	I Express Interface Blocks	-	_	-
	Gen3 PC	Express Interface Blocks	1	2	3
Embedded Hard IP	Agile M	ixed Signal (AMS) / XADC	1	1	1
Resources	Configur	ation AES / HMAC Blocks	1	1	1
	GT)	(12.5Gb/s Transceivers ⁽²⁾	-	_	-
	GTH	1 13.1Gb/s Transceivers ⁽³⁾	24	48	72
	GTZ	28.05Gb/s Transceivers	8	8	16
		Commercial	-1, -2	-1, -2	-1, -2
Speed Grades		Extended ⁽⁴⁾	-2L, -2G	-2L, -2G	-2L, -2G
		Industrial	_	_	_
Configuration	Conf	figuration Memory (Mbits)	91.8	183.6	275.424
	Package ⁽⁵⁾	Area	1.8V Se	electIO Pins (GTI	
	Ceramic flip chip, fine	e pitch BGA (1.0 mm ball s			8~
	HCG1155	35 x 35 mm	300 24, 8	400 (24, 8)	
	HCG1931	45 x 45 mm		600 (48, 8)	650 (48, 8)
	HCG1932	45 x 45 mm		300 (48, 8)	300 (72, 16)
					XMP084 (v4.4)

EXILINXALL PROGRAMMABLE

Summary

© Copyright 2012 Xilinx

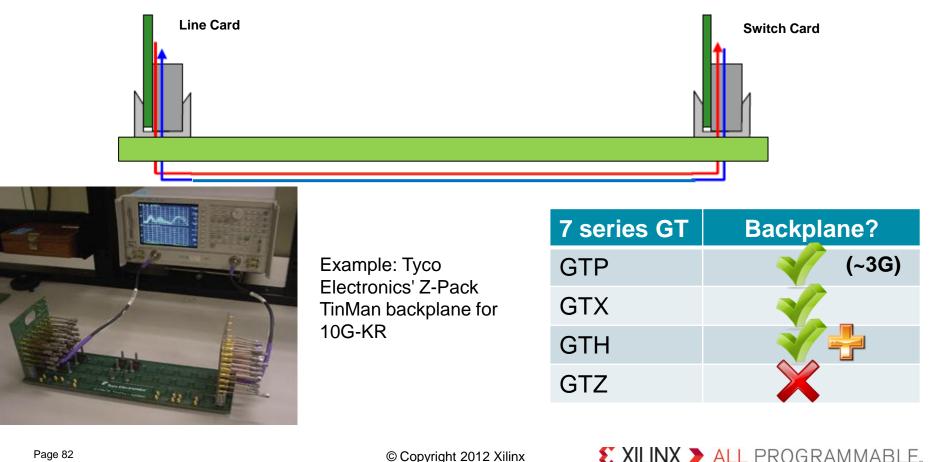
Summary

> New for 7 Series:

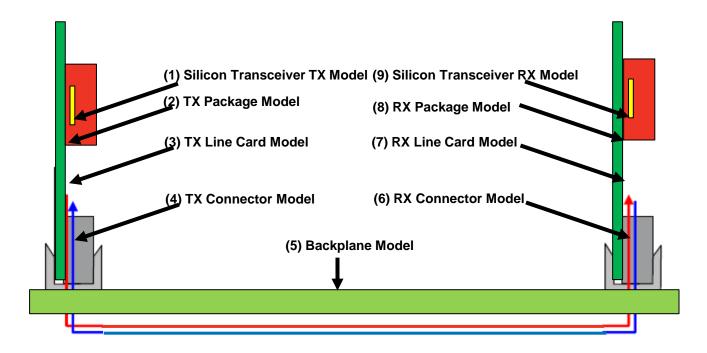
- Common Transceiver Architecture
 - IP portability
- Different Rates for different platforms
- Low Power Mode
 - 30% lower power for chip-to-chip channels

> 7 Series FPGAs Have the Most Comprehensive Transceiver Family

- Virtex-7 GTZ : 28Gb/s Transceivers for 100G and 400G datapaths
- Virtex-7 GTH : Highest Performance/Count Transceiver Family
- Virtex-7 GTX : 12.5Gb/s with more SelectIO for wider memory interfaces
- Kintex-7 GTX : 12.5Gb/s to the masses
- Artix-7 GTP : Ultra-High Volume Transceivers


ALL PROGRAMMABLE

Appendix A: Backplane


© Copyright 2012 Xilinx

Backplane Basics

A backplane is a PCB board that connects connectors so that each pin on each connector is linked to the same relative pin on the other connector(s) forming a data bus.

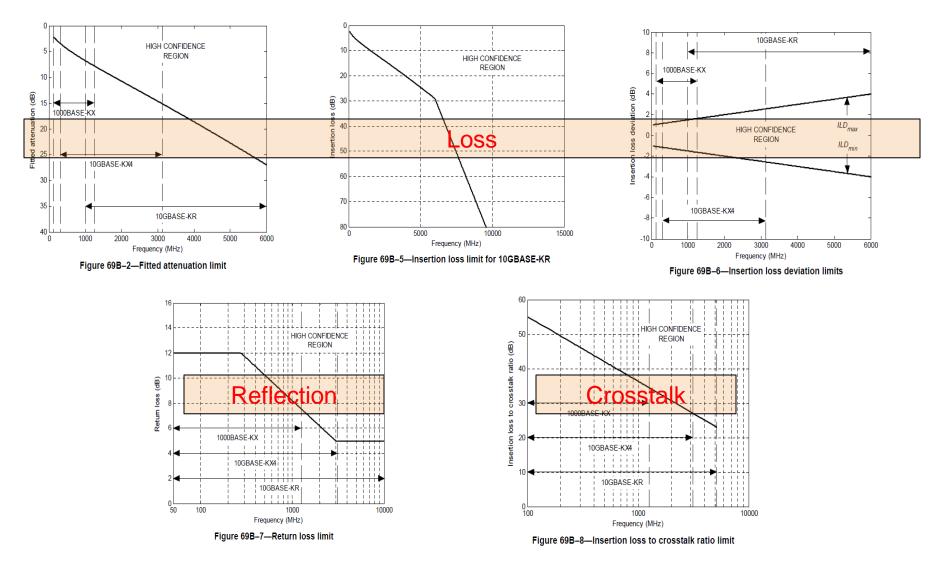
Backplane System Modeling

> Components to properly design and model a backplane system

> Xilinx provides Silicon IBIS-AMI Models and Package S-parameter files

- 1000x faster simulation time than HSPICE
- Correlated with HSPICE before silicon
- Correlated to HW at Production
- Xilinx was the first in the industry to offer IBIS-AMI models (Virtex-5)

Signal Integrity Challenge and Mitigation in Backplane System

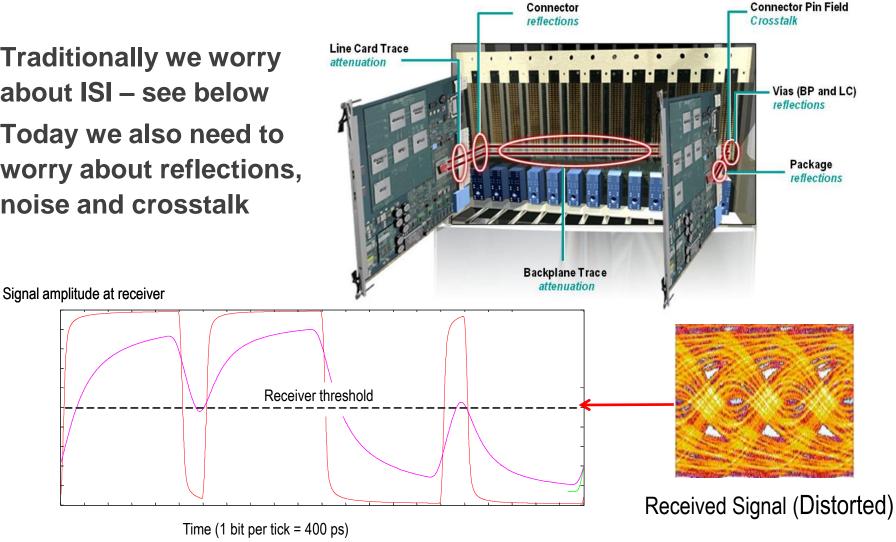

> Signal Integrity Challenge

- Insertion Loss
- Reflection
- Crosstalk
- > Factors
 - Channel length
 - Board material selection
 - Trace width & spacing
 - Board thickness & Via
 - Signal intensity
- > Mitigation
 - TX Jitter
 - Improve jitter performance to increase system margin
 - TX FIR
 - Pre and Post tap
 - RX CTLE
 - Compensate Insertion Loss
 - · Adaptation significantly reduces the time identify
 - RX DFE
 - · Compensate insertion loss at high frequency
 - · Compensate reflection within tap limitation

IEEE 802.3 10GBase-KR Channel Parameters

- Fitted Attenuation
- Insertion Loss
- Insertion Loss Deviation
- Return Loss
- Insertion Loss to Crosstalk Ratio

Backplane 802.3 10GBase-KR Channel Parameters

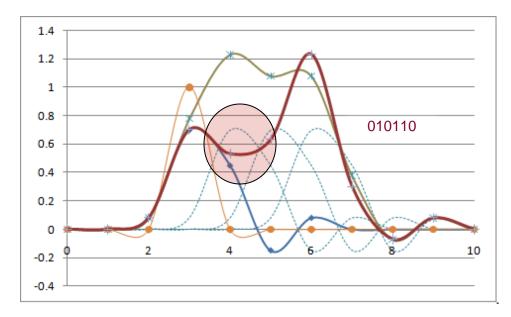

EXILINXALL PROGRAMMABLE

Appendix B: Equalization

© Copyright 2012 Xilinx

The Channel – What to do about it?

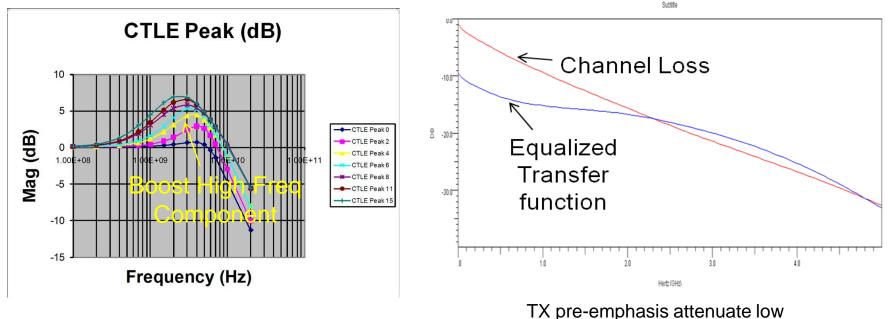
- Traditionally we worry about ISI - see below
- > Today we also need to worry about reflections, noise and crosstalk


Inter-Symbol-Interference and Equalization

Inter-Symbol-Interference (ISI)

 An impulse response through a channel can expand to other symbols hence impact the waveforms at other symbols

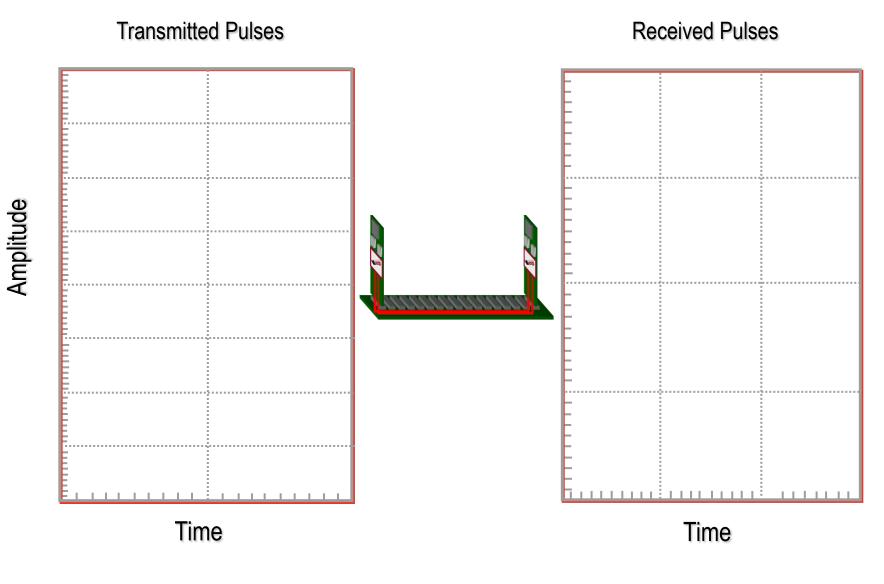
> Equalization - Mitigate ISI to ensure correct data sampling

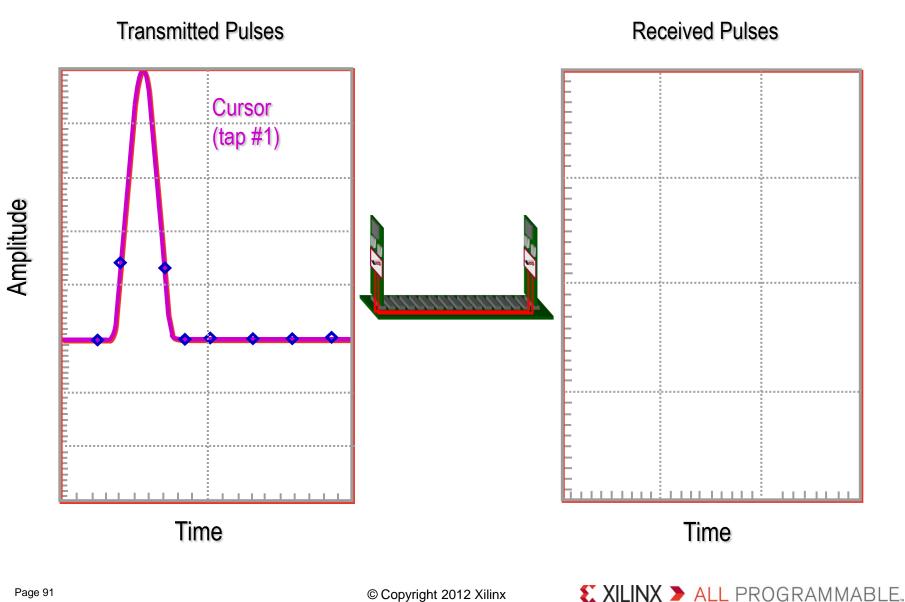

- Linear Equalization
- Non-linear Equalization

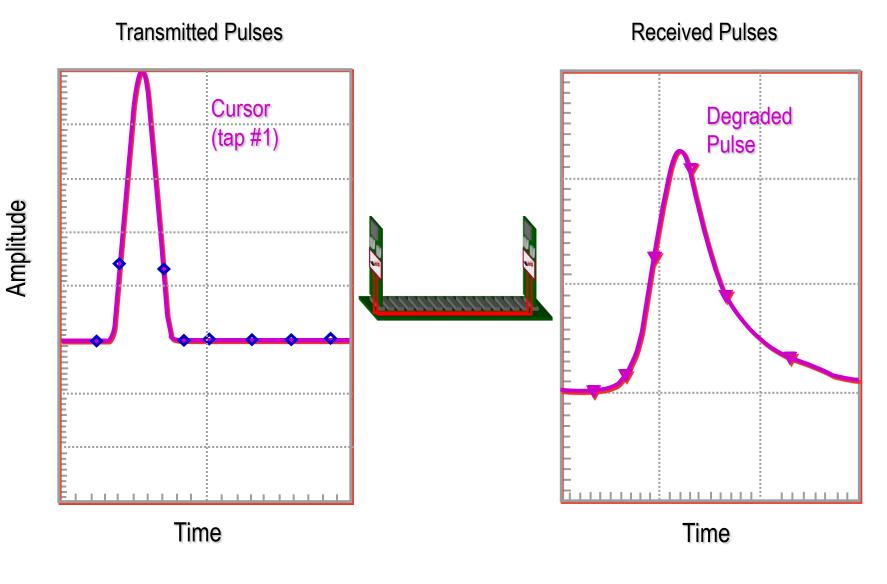
Technique #1: Linear Equalization

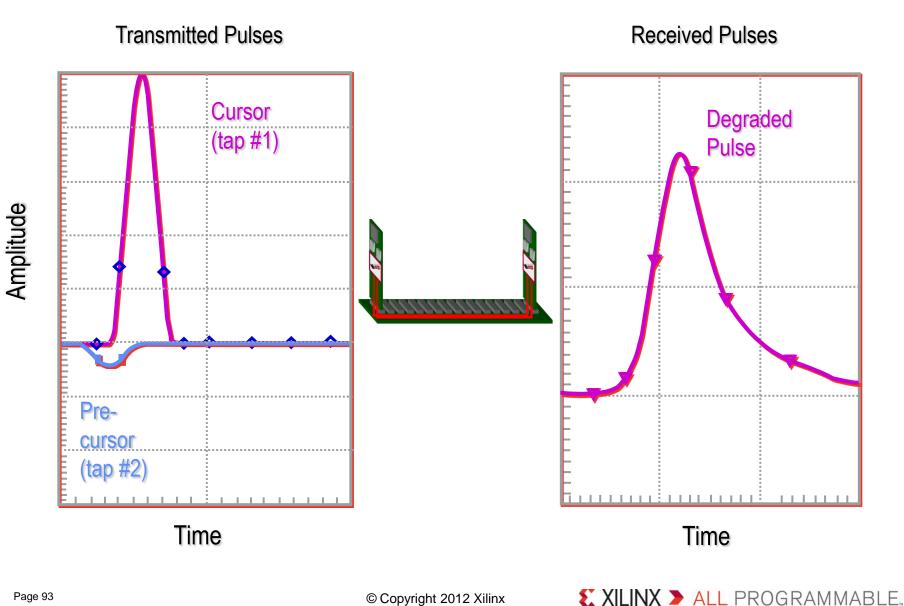
Linear Equalization

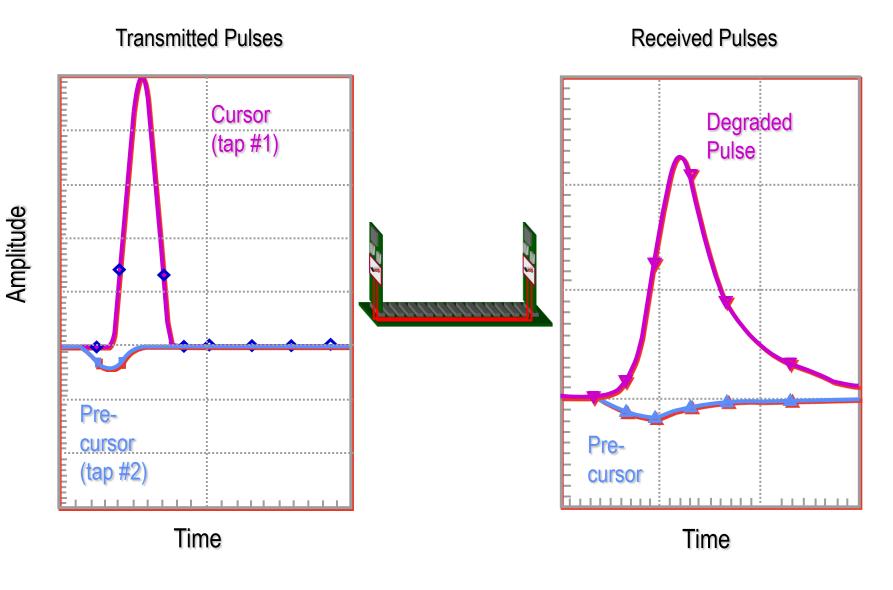
- Transmitter: Attenuate low frequency and/or boost high frequency
- Receiver: Boost high frequency
- Compensate insertion loss
- Limitation: Boost high frequency noise

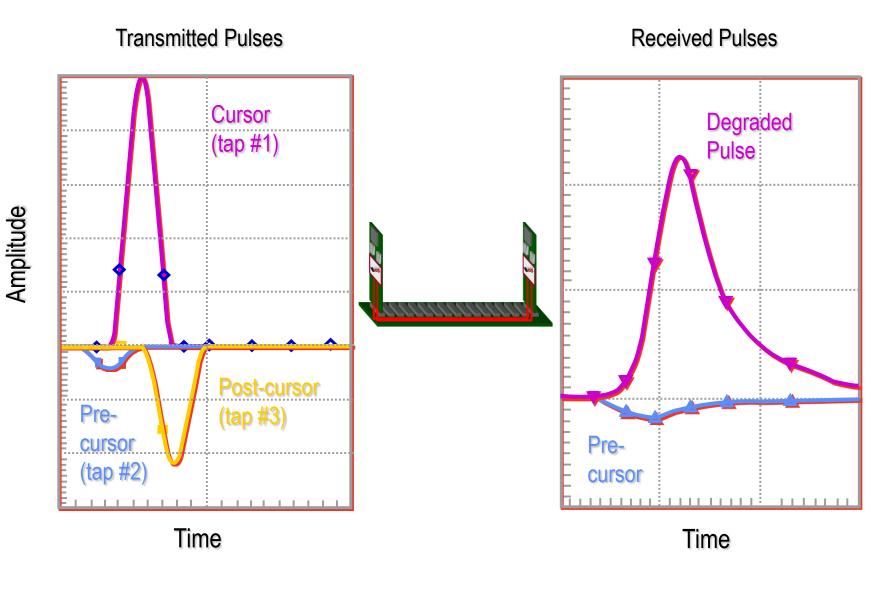

RX linear equalizer frequency response

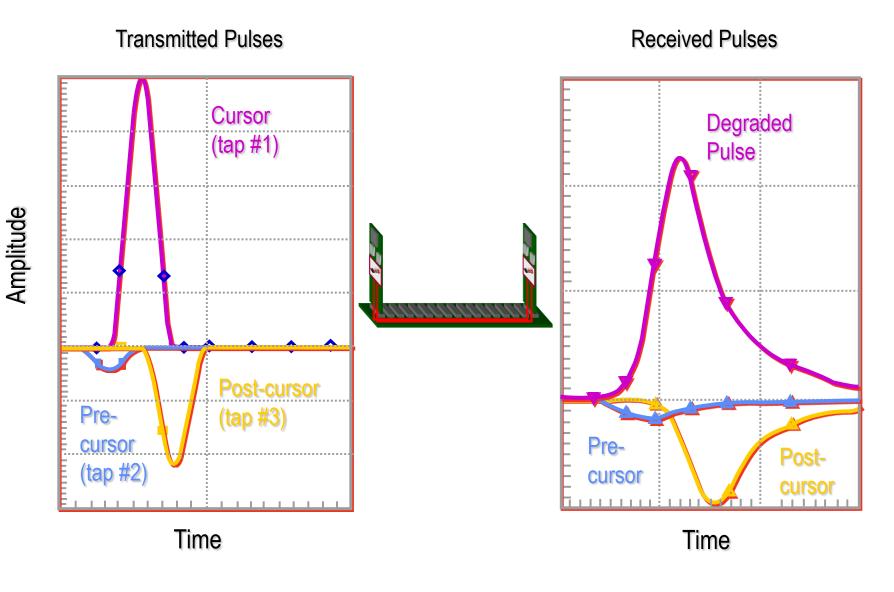

frequency & boost high frequency

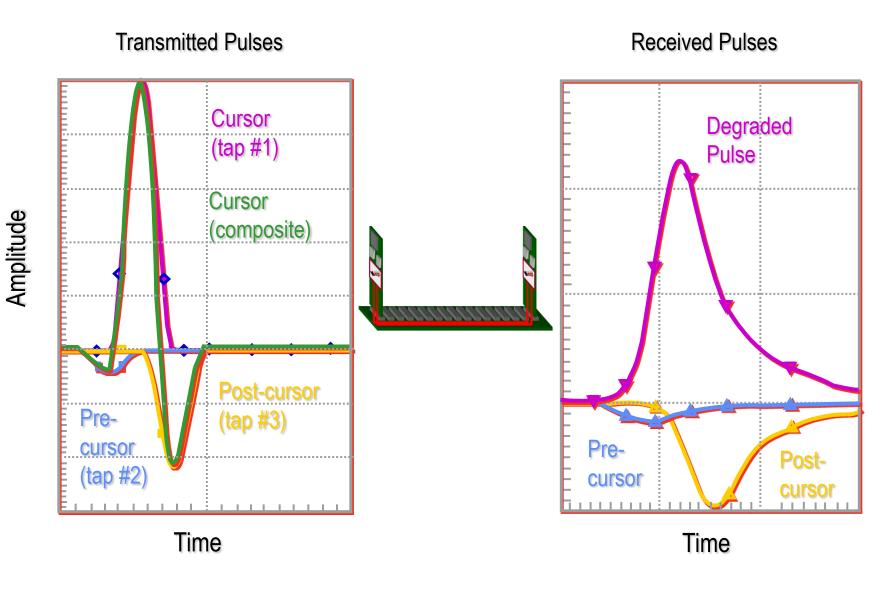

XILINX > ALL PROGRAMMABLE.

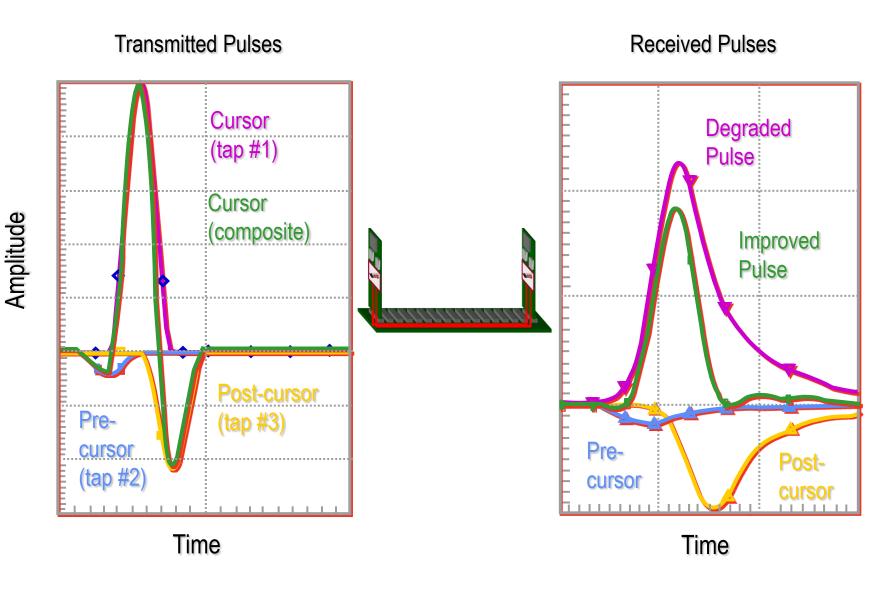

Transfer Function


© Copyright 2012 Xilinx









Page 97

7 Series TX Driver Structure With 3 Tap Emphasis

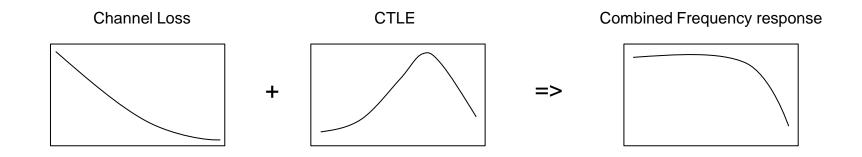
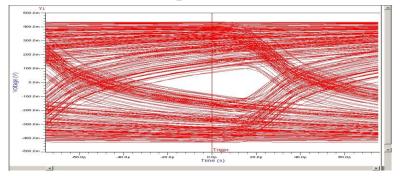
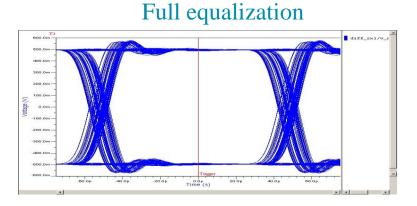



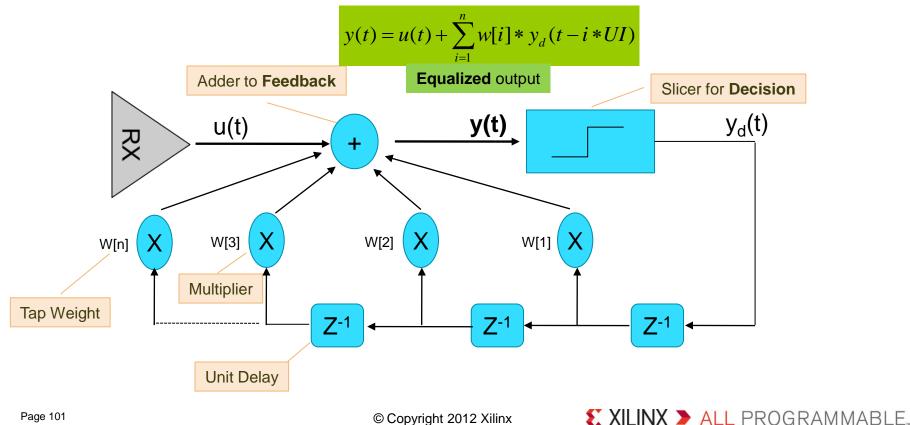
Figure 3-11: TX Configurable Driver Block Diagram


7 Series Serdes	GTP	GTX	GTH	GTZ
Main Cursor	Yes	Yes	Yes	Yes
Post Cursor De-Emphasis	Yes	Yes	Yes	NDA
Pre Cursor De-Emphasis	Yes	Yes	Yes	NDA
10G-KR Backplane TX	NA	Yes	Yes	No


© Copyright 2012 Xilinx

RX Linear Equalization – Loss Compensation

No equalization



Technique #2: Decision Feedback Equalization

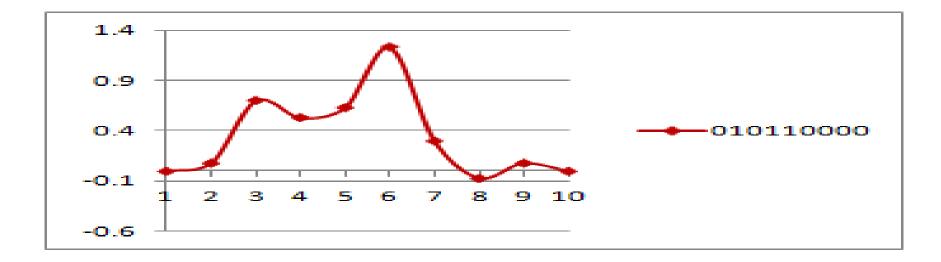
Decision Feedback Equalization (DFE)

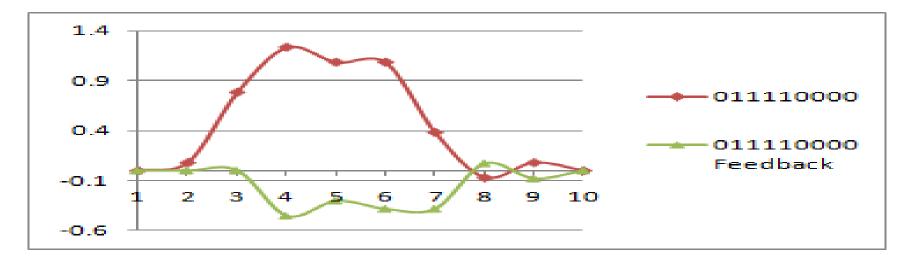
- A nonlinear equalizer that uses previous symbols to eliminate the Inter-Symbol-Interference (ISI) on current symbol.
 - The ISI on current symbol, caused by previous symbols, is subtracted by DFE.

DFE Challenge and Limitation

> Tap weight

- Ideal tap weights
- LMS Adaptation
- Error propagation
- > Speed requirement


0.8 0.7 0.6 -W[1] 0.5 0.4 0.3 0.2 -W[2] 0.1 0 Φ 2 4 6 8 10 12 14 16 -0.1 -W[3]


Tap weight based on ISI

> Post Tap only

DFE Effect

EXILINXALL PROGRAMMABLE

Xilinx 7 Series Transceivers Use Cases

© Copyright 2012 Xilinx

Use Cases for 7 Series FPGAs (with Transceivers)

> Artix-7 FPGA GTP:

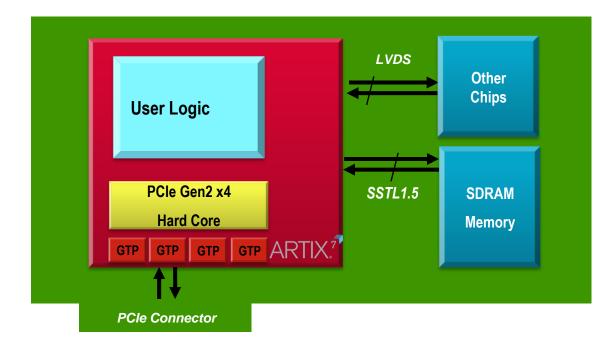
- PCIe Gen1 plug-in card
- Glue Logic w. PCle

> Kintex-7 FPGA GTX:

- Low-cost CPRI radiohead/base station
- Low-cost SDI switch
- PCIe Gen2 plug-in card
- 40G OTU3 Muxponder

> Virtex-7 FPGA GTX:

- 10G CPRI radiohead/base station
- Cost-reduced 120G Line Card (Packet Processing)
- Cost-reduced 120G Line Card (Traffic Management)


> Virtex-7 FPGA GTH:

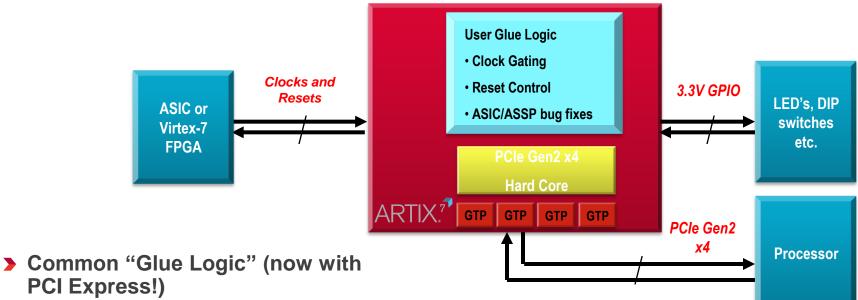
- 100G OTU4 Transponder with 25% overhead FEC
- 10G-KR Backplane Switch
- High Count SDI switch

> Virtex-7 FPGA GTZ:

- 2x100G "Double Smart Gearbox"
- 100G Line Card
- 100G OTU4 Muxponder
- 200G with CFP2 optics
- 400G Single Chip

Artix-7 FPGA Use Case #1 Lowest Cost PCIe Card

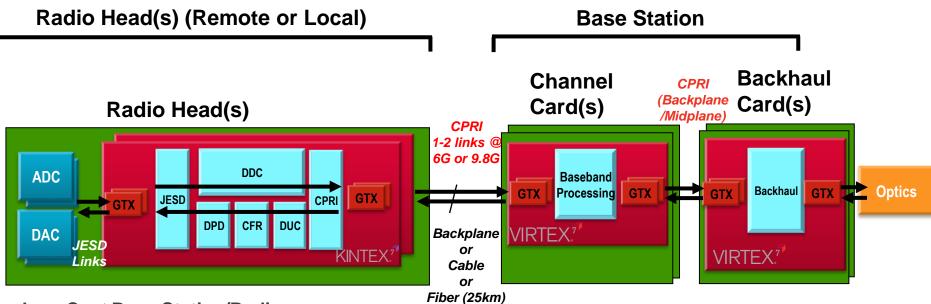
> Lowest Cost PCIe Plug-in Card


- Up to x4 Gen2 PCIe

> Difference from 40nm:

- Improved PCIe (x4)
 - Advanced PCIe features
- More Logic
- Lower Power
- > Why?
 - Lowest Cost per feature

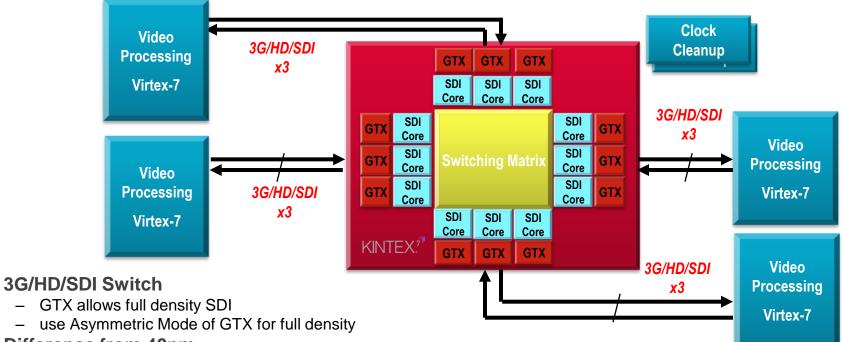
Page 106


Artix-7 FPGA Use Case #2 Glue Logic w. PCle

- Clock Control
- Reset Control
- ASIC/ASSP fixes
- Misc Glue Logic
- > Difference from 40nm
 - Cheaper
 - PCle x4
- > Why?
 - Historical FPGA function at lowest cost

Kintex-7 FPGA Use Case #1 Low Cost CPRI Radio Head Implementation

Low-Cost Base Station/Radio Implementation


- High CPRI bandwidth
- High DSP Usage
- Low IO Usage
- Extreme Cost Pressure (very high volume)

> Difference from 40nm?

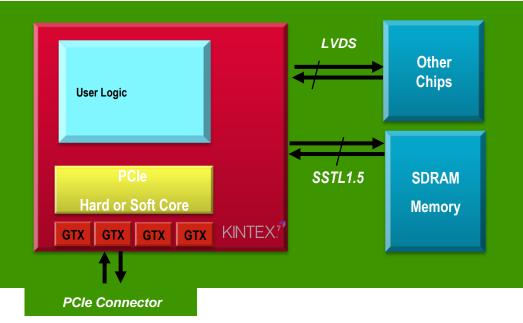
- Datarates rising 4x from generation 1 to generation 2
 - Much faster than Wired Datarates
 - Surprising to all involved (inc. market leading customers)
- Extreme cost pressure (volume ramp)

- > Why?
 - Cell sites getting smaller due to higher datarates
 - Cost pressure due to smaller cell cost points and volume
- > Other Notes
 - # cables is inflexible after installation
 - Strong pressure to go faster (not wider) to get to higher datarates to prevent re-install

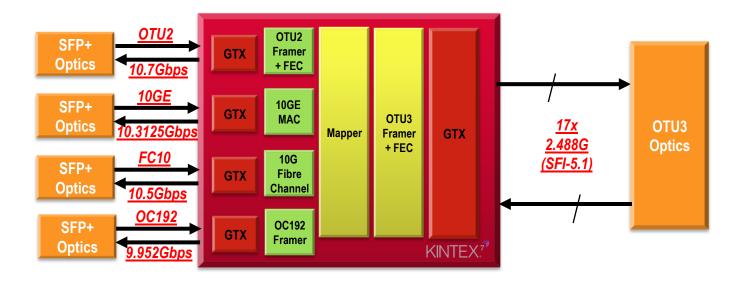
Kintex-7 FPGA Use Case #2 Low Cost 3G/HD/SDI Switch

- > Difference from 40nm
 - Virtex-6 LXT => Kintex-7
- > Why?
 - Low cost switching
 - Can add customer processing logic
- > Note:
 - Requires external clock cleanup
 - (internal clock cleanup under investigation TBD)
 - No cleanup needed for GenLock implementations
 - Internal switch implementation limited by Clock Domains

© Copyright 2012 Xilinx


Kintex-7 FPGA Use Case #3 PCIe Gen3 Plug-In Card

Lowest Cost PCIe Plug-in Card


- Up to x8 Gen3 PCIe
- Current POR requires soft core for Gen3 in Kintex/Virtex 7 T devices

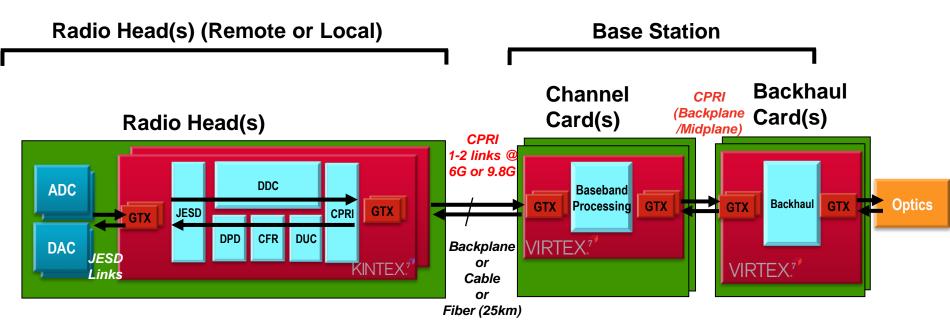
> Difference from 40nm:

- Improved PCIe Gen3 (x8)
 - Advanced PCIe features
- More Logic
- Lower cost than V6 LXT
- Higher Performance than S6
- > Why?
 - Allows Xilinx into the low cost Gen3 market and migration of S6 designs to higher bandwidth

Kintex-7 FPGA GTX Use Case #4 40G OTU3 Muxponder

40G OTU3 Muxponder

- Up to 480k Logic Cells for the largest EFEC implementations
- Up to 20% overhead FEC with 12.5Gbps
- Only mid-range 28nm FPGA that supports OTU speeds


> 4th generation Partial Reconfiguration

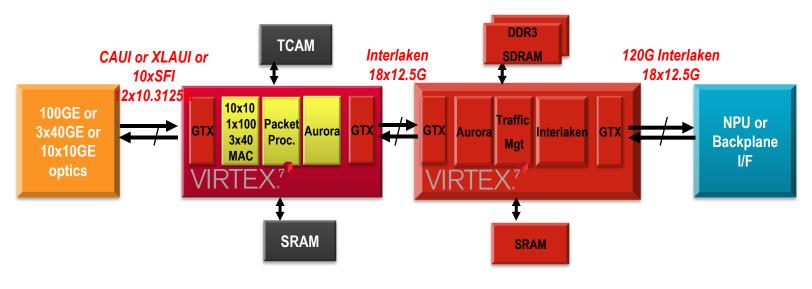
- 10G tributaries can be individually reconfigured without affecting traffic
- Partial Reconfiguration regions shown in green boxes

Difference from 40nm

Virtex-6HXT application supported in Kintex! (significant cost reduction)

Virtex-7 FPGA GTX Use Case #1 10G CPRI Radio Head/Base Station

> Higher Speed Base Station/Radio Implementation

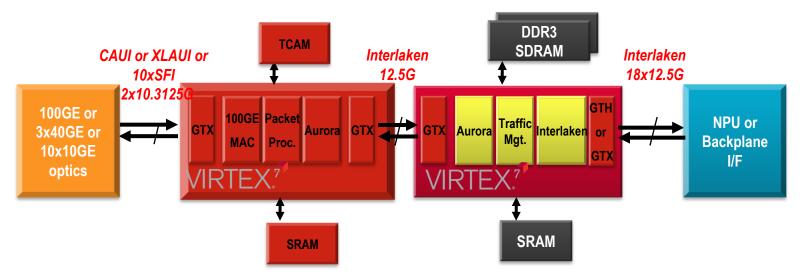

- High CPRI bandwidth
- High DSP Usage
- Low IO Usage

Difference from 40nm?

- Datarates rising 4x from generation 1 to generation 2
 - Much faster than Wired Datarates
 - Surprising to all involved (inc. market leading customers)

- Why?
 - Remote Radio heads to support smaller cells in larger monolithic base station
- Other Notes
 - # cables is inflexible after installation
 - Strong pressure to go faster (not wider) to get to higher datarates to prevent re-install

Virtex-7 FPGA GTX Use Case #2 Cost Reduced 120G Line Card (Packet Processing)


100G Packet Processing Implementation

- WRED
- Packet Tagging and Selective Drop (various algorithms)
- Difference from 40nm?
 - Datarates rising from previous generations

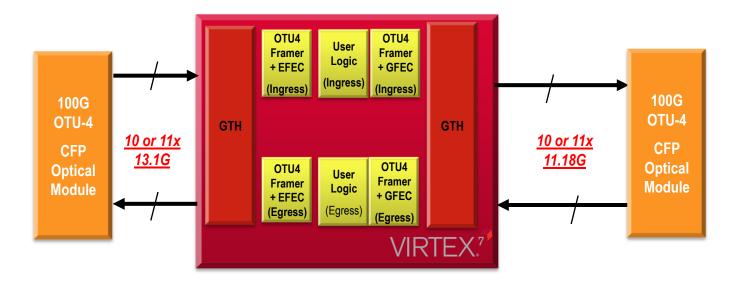
> Why?

- 100G becomes mainstream in 7 series timeframe
- Increasing need for advanced packet processing
- Other Notes
 - Trie-based CAM architecture possible with external RAM

Virtex-7 FPGA GTX Use Case #3 Cost Reduced 120G Line Card (Traffic Management)

> Industry trend and requirement

- 100G has become mainstream in 7 series timeframe
- Increasing need for granular traffic management

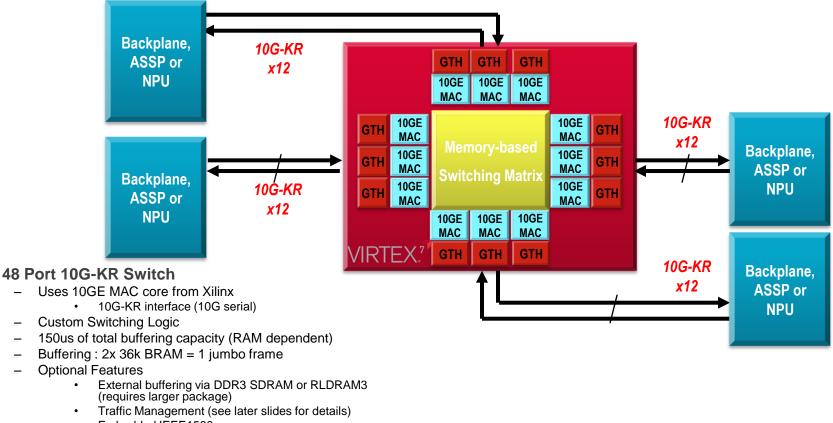

> 100G Traffic Management Implementation

400Gbps of packet buffering bandwidth to external DDR3 SDRAM to support unidirectional 100G stream

Difference from 40nm

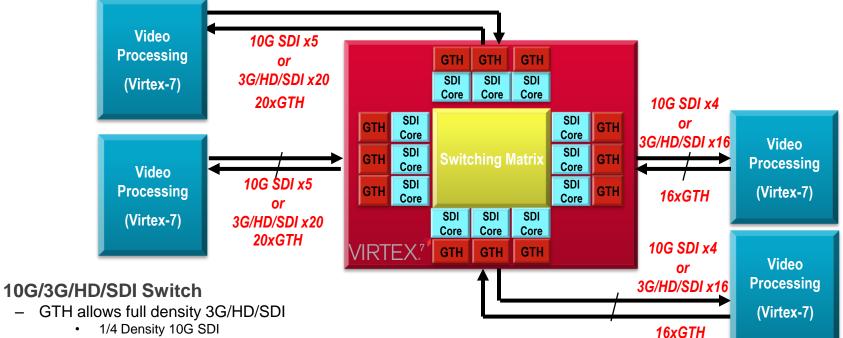
- 1866Mbps DDR3 SDRAM interface allows lower power implementation
- Data rates rising from previous generations

Virtex-7 FPGA GTH Use Case #1 100G OTU4 Transponder


100G OTU4 Transponder

- Up to 870k Logic Cells for the largest EFEC implementations
- Up to 25% overhead FEC with 13.1Gbps
- Over 40% larger than competetion 28nm FPGAs

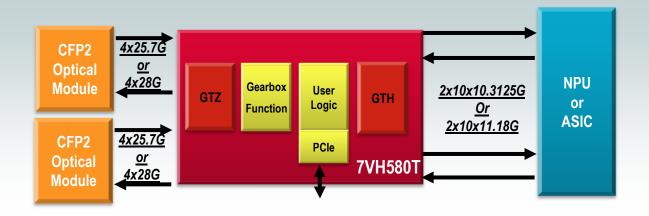
> 100G Muxponder


- 10x10G independent tributary to 1x100G trunk muxponder also possible in 7VX485T and above
- > Difference from 40nm
 - Higher overhead to 13.1Gbps @ 25% FEC

Virtex-7 FPGA GTH Use Case #2 10G-KR Backplane Switch

- Embedded IEEE1588
- Ethernet AVB
- > Differences from 40nm
 - 48 ports vs. 24 ports in V6
 - (possibly larger if more thermal envelope is possible)
- Notes:
 - Thermal envelope must be tracked carefully

Virtex-7 FPGA GTH Use Case #3 High Density SDI Switch



- use Asymmetric Mode of GTH for full density

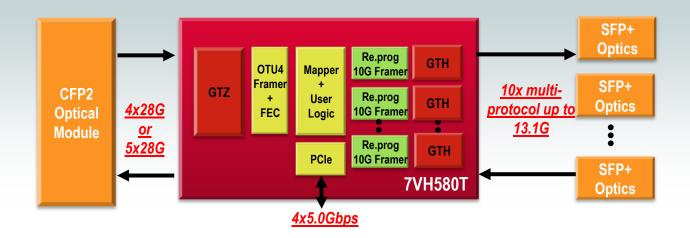
> Difference from 40nm

- Size Matters
- 10G SDI Support
- > Note:
 - Requires external clock cleanup
 - (internal clock cleanup under investigation TBD)
 - No cleanup needed for GenLock implementations
 - Internal switch implementation limited by Clock Domains


Virtex-7HT GTZ Use Case #1 2x100G "Double Smart Gearbox"

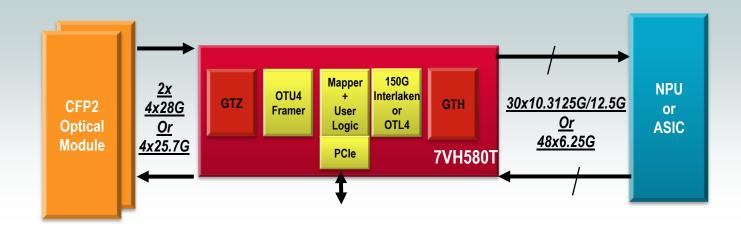
- Allows reuse of legacy ASIC or NPU with new CFP2 optics
- Allows additional functionality in user logic
- Supports 100GE (CAUI), OTU4 (SFI-S or OTL4.10) or custom protocol (e.g. MLD @ 20x5.15G) on system side

Simple Gearbox Function – Achievable Cost-effectively with Virtex-7HT


Virtex-7HT GTZ Use Case #2 100G OTU4 Line Card

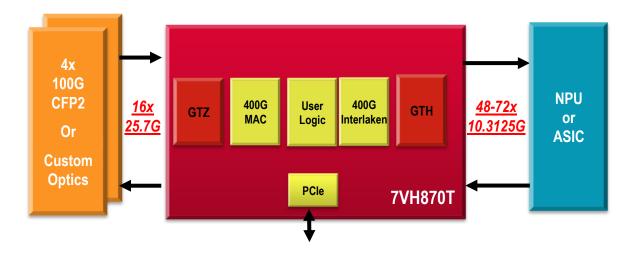
- Allows flexible FEC / EFEC if desired with up to 870,000 logic cells
- Allows connection with legacy ASICs @ 12.5G, 10.3125G and 6.25G

Cost Reduced OTU4 with Next Generation CFP2 Optics


Virtex-7HT GTZ Use Case #3 100G OTU4 Muxponder

- Allows flexible FEC / EFEC if desired
- OTL4.4 and SFI-S support for 28G
- Up to 18 Independent optically compliant tributaries up to 13.1Gbps
- Partial Reconfiguration on 10G+ Tributary Framers to support 10GE, FC10, OTU2, OC-192 or other protocols. (green boxes)
- Migration path to 870T if more logic is needed (e.g. EFEC)

Single chip 100G Muxponder with EFEC


Virtex-7HT GTZ Use Case #4 2x100G Line Card

- Allows Density Upgrade from 1x100G solutions
- 2x 100GE or 2xOTU4 (GFEC) possible
- System Side can be 2x Interlaken, 2x CAUI, 2x OTU4 (SFI-S or OTL4.10) or custom

Cost Reduced OTU4 with Next Generation CFP2 Optics

Virtex-7HT GTZ Use Case #5 400GE Line Card

- Allows first-to-market 400GE interface
- No external PHY needed

Only FPGA that Enables a Single Chip 400G Implementation

© Copyright 2012 Xilinx