Optique - état de l'art (futurs composants optiques)

Laurent Vivien

Centre for Nanoscience and Nanotechnology (C2N), CNRS UMR 9001, Université Paris Sud, Université Paris-Saclay, site d'Orsay, 91405 Orsay Cedex, France

http://silicon-photonics.ief.u-psud.fr/

Source of images: Intel, Google

Motivation

- $\sqrt{10}$ Photonics integrated optics and optoelectronics
- $\sqrt{}$ Why do we want to use silicon for photonic applications?
- $\sqrt{}$ What are the main challenges?
- $\sqrt{1}$ Is silicon a good material for optics applications?
- $\sqrt{}$ What are the markets?
- Main building blocks in photonics
 - \checkmark Light propagation
 - $\sqrt{100}$ Optical modulation
 - \checkmark Light detection
 - \checkmark Light emission
- Conclusion

... among the « hot topics » in photonics

Silicon Photonics

The optical integration trends

Photonic integration...

2010

LASER Theodore Maiman

Battle between Optics and Copper

Optics has progressively eliminated copper in the metro and long haul network in the last 20 years

Global internet traffic

VIDEO, HD TV

Source of images: Google

On-line games

File sharing

Internet traffic doubling every 18 months

Estimated trans-atlantic traffic in 2025: 400 Tbit/s

E. Desurvire, J.Lightwave Technol., vol. 24, no. 12, (2006), "Capacity Demand...Next...

Evolution in Japan

The current technologies can't scale to the increasing traffic in future.

3-4 digit energy saving is necessary, which means we need a new paradigm.

S. Namiki et al., OECC2009, FT2, Hong Kong

http://www.aist.go.jp AIST

Data centres

100 000+ x 10 Gbit/s servers in data centre

50% of data centre power for cooling

Cooling system !?

Copper interconnects in IC

Increase of integrated circuit complexity

 $\sqrt{\text{Number of transistors}}$

CINIS

 $\sqrt{\rm Frequency}$ operation

 $\sqrt{\text{Length}}$ and density of metallic interconnects

http://silicon-photonics.ief.u-psud.fr/

What's happen?

Reverse scaling

Source: http://semimd.com/

R and C increase !

Source: IBM

Metallic interconnects

To improve performances

The problems for the next generation of communication systems

Towards at the end...

Optics vs microelectronics

	Microelectronics
Building blocks	Transistor
Material	Silicon
Manufacturing technology	CMOS

Optics vs microelectronics

	Microelectronics	Silicon Photonics
Building blocks	Transistor	Laser, waveguides, photodetectors, modulator, microresonators,
Material	Silicon	Silicon-based III-V? Other?
Manufacturing technology	CMOS	CMOS "compatible process"

Photonics is much more complex to integrate

Optical Interconnects

Silicon for optics: Pro's and Cons

Transparent in 1.3-1.6 µm region

- Take advantage of CMOS platform
 - $\sqrt{}$ Mature technology
 - \checkmark High production volume
- Low cost
- Silicon On Insulator (SOI) wafer
 - $\sqrt{}$ Natural optical waveguide
- High-index contrast (n_{Si}=3.5 n_{SiO2}=1.5)
 - \checkmark Strong light confinement

Small footprint (450nm x 220nm)

Motivation

Main building blocks in photonics

- $\sqrt{}$ Light propagation
 - > Waveguides
 - Bends, splitters
 - Fiber coupler
- $\sqrt{0}$ Optical modulation
- $\sqrt{}$ Light detection
- $\sqrt{\text{Light emission}}$
- Conclusion

First approach: the simplified picture of

 $n_c > n_{sub} > n_0 \implies total reflexion$

ray-optics

$$\beta > \max\left(n_{sub}\frac{\omega}{c}, n_0\frac{\omega}{c}\right)$$

Substrates: Refractive index contrast

Silicon on Insulator substrate (SOI)

Higher refractive index contrast, smaller cores, tighter bends

Downscaling of photonics

Silica on silicon

Contrast ~ 0.01 – 0.1 Mode diameter ~ 8µm Bend radius ~ 5mm Size ~ 10 cm²

Source: Slide from Wim Bogaerts – Summer school 2011 St Andrews

Strip waveguides: total loss (leakage and scattering)

Total losses: $\alpha_{total} = \alpha_{roughness} + \alpha_{leakage}$

Compromise between scattering and leakage losses

Bends to turn the guided light

Increase for smaller bend radii

Beam splitter

MultiMode interferometer

Compact structure (L ~ μ m)

Source : G.Rasigade et al, optics letters 2010

Interference conditions => depend of the optical path => depend of the wavelength Spectral bandwidth: several tens nm

Waveguide crossings !?

 λ = 1,55 µm T \approx 93% crosstalk \approx 2%

Not so large optical crosstalk but ...

October 1, 2007 / Vol. 32, No. 19 / OPTICS LETTERS

Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides

http://silicon-photonics.ief.u-psud.fr/

Laurent Vivien

Injection of light in/from an optical fiber: The problem to be solved

Injection of light in/from an optical fiber: the main approaches

Butt-coupling

- Alignment critical;
- Need facet dicing/polishing;
- Polarization-insensitive;
- Large bandwidth;

- Alignment tolerant;
- Test in wafer scale (no facet dicing/polishing);
- Polarization-sensitive;
- Relatively small bandwidth;

Passive photonic devices

Motivation

Main building blocks in photonics

$\sqrt{}$ Light propagation

- $\sqrt{}$ Optical modulation
 - Principle
 - Physical effect
 - Recent advances
- \checkmark Light detection
- $\sqrt{\text{Light emission}}$

■Conclusion

Optical modulation

Optical modulation

PARIS

CNIS

Electro-refraction vs intensity variation

Ring resonators

Asymmetric MZI

MZI principle

Physical effect to induce phase shift

What are the EO effects?

Electro-optic effect

Nonlinear Polarization:

$$\tilde{P}(t) = \chi^{(1)} \tilde{E}(t) + \chi^{(2)} \tilde{E}^{2}(t) + \chi^{(3)} \tilde{E}^{3}(t) + \cdots$$

Simplistic model for an atom =

Electronic cloud (charge -) Nucleus (charge +)

Electro-optic effect

Electro-optic effect

Nonlinear Polarization:

$$\tilde{P}(t) = \chi^{(1)}\tilde{E}(t) + \chi^{(2)}\tilde{E}^{2}(t) + \chi^{(3)}\tilde{E}^{3}(t) + \cdots$$

Break the symmetry of silicon crystal

Strained silicon photonics

How to strain silicon?

Strain induced by a straining overlayer $\sqrt{300}$ SOI waveguide

Electro-optic effect in silicon

Free carrier density variation in silicon

- Refractive index are modified by free-carrier concentration variations:
 - Plasma dispersion effect

Soref et al IEEE JQE QE-23 (1), (1987).

http://silicon-photonics.ief.u-psud.fr/

What are the possibilities to obtain a free carrier concentration variation in silicon-based materials ?

- Carrier injection in pin diode under forward bias voltage
- Carrier accumulation in metal-oxide-semiconductor (MOS) capacitors
- Carrier depletion in a pin diode under reverse bias voltage

Modulator based on carrier accumulation

Intel (2004) : 1st optical modulator working at 1 GHz.

- [1] A. Liu et al, « A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor », Nature, vol. 427, pp. 615-618 (2004).
- [2] L. Liao et al, « High speed silicon Mach-Zehnder modulator », Optics Express, vol. 13, pp. 3129-3135 (2005).

Modulator based on carrier injection

Cornell Univ : modulator based on carrier injection in a ring resonator

- Q. Xu et al, « Micrometer-scale silicon electro-optic modulator », Nature, vol. 435, pp-325-327 (2005).
- L. Chen et al, « Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors », Optics Express, vol. 17, pp.15248-15256 (2009).

Modulator based on carrier depletion

Intel : 1st modulator working up to 40 Gbit/s

[1] A. Liu et al, « High-speed optical modulation based on carrier depletion in a silicon waveguide », Optics Express, vol. 15, pp. 660-668 (2007).

Optical modulators based on carrier depletion

Phase shifters:

- PN diode
- Interleaved PN diode
- PIN diode
- PIPIN diode

Interferometers

- Ring resonator
- Mach-Zehnder
- Photonic cristals

Si optical modulators based on Plasma-dispersion effect

Europe: Univ. Paris Sud, CEA Leti, IMEC/Gent Univ., Univ. of Southampton, UPV, RWTH... **Asia:** A*Star, Petra, AIST, Chinese Academy of Sciences, Samsung Electronics, Tokyo Institute of Technology, Pekin Univ. ...

North America: Intel, IBM, Cornell, Luxtera, Ligthwire, Kotura, Oracle, MIT ...

From the idea to the final device

Silicon modulators

Short distance and high volume applications (electrical bottleneck)

Optical interconnects

Data-center

Main challenges: ✓ Follow the electronic technology ✓ Still reduce cost!

200 mm versus 300 mm

200mm wafer

- High volume
- Sub-65nm CMOS node
- 193nm immersion photolithography
 - Sub-50nm resolution
- Wafer thickness uniformity
 - \checkmark < ±5nm on 300-mm
 - ✓ ~ ±10nm on 200-mm

✓ Yield

Laurent Vivien

Silicon photonics on 300 mm platform

Optical modulators

 $V_{\pi}L_{\pi} = 2.4 \text{ V.cm}$

Insertion loss = 4 dB

-3dB cut-off frequency > 20 GHz

ER ~8 dB @ 40 Gbit/s

Mach-Zehnder Interferometer

Length = 950 µm

Silicon modulators

Short distance and high volume applications (electrical bottleneck)

Data-center

Optical interconnects

Main challenges:
 ✓ Follow the electronic technology
 ✓ Still reduce of cost!
 ✓ Driving voltage of

- Driving voltage of modulator
- ✓ Power consumption

ITRS Roadmap: Optical interconnect

•(...) A large variety of CMOS compatible modulators have been proposed in the literature (...)

The primary challenges for optical interconnects at the present time are producing <u>cost effective</u>, low power components."

Power consumption

Energy to charge the device Energy/bit = 1/4 (CV_{pp})²

Energy dissipation of photocurrent Energy/bit = 1/B (I_{ph}V_{bias})

Drive the modulator in push-pull configuration

How do we reduce the power consumption ?

- Slow-wave device for reducing the length
- √ Ring Modulators

Targets : ~100 fJ/bit for longer off-chip distances, 10's of fJ/bit for dense off-chip connections and a few fJ/bit for global on-chip connections.

D. A. B. Miller, Proc. IEEE 97(7), 1166–1185 (2009).

Power consumption

Mach Zehnder modulators ~ 3 pJ/bit

For emitters and short optical links: ~100 fJ/bit down to fJ/bit (D.A.B. Miller, Opt Exp. , 2012)

Ring resonator modulators ~ 0.5 pJ/bit

Power consumption

Energy to charge the device Energy/bit = 1/4 (CV_{pp})²

Energy dissipation of photocurrent Energy/bit = 1/B (I_{ph}V_{bias})

- Drive the modulator in push-pull mode
- Reduction of capacitance of depletion device
 - \checkmark Slow-wave device for reducing the length
 - √ Ring Modulators
- Modulation efficiency (compactness)
 - $\sqrt{}$ Improve efficiency of Si modulator
 - $\sqrt{\rm MZM}$ or EAM Hybrid modulator
 - $\sqrt{}$ Ge EAM modulators (QCSE or FK)

Targets : ~100 fJ/bit for longer off-chip distances, 10's of fJ/bit for dense off-chip connections and a few fJ/bit for global on-chip connections.

D. A. B. Miller, Proc. IEEE 97(7), 1166–1185 (2009).

Electro-absorption modulator

□ Absorption edge in QW structures is more abrupt than in bulk material

- \Box E₀ depends on the quantum well thickness
 - Adjustment of the wavelength is possible

PARIS

SID

université

C2N

CNrs

Epitaxial growth by LEPECVD

 Growth of Ge/SiGe multiple quantum wells

<u>LEPECVD</u>

Low energy plasma enhanced chemical vapor deposition

Laurent Vivien

Electroabsorption modulator

http://silicon-photonics.ief.u-psud.fr/

Laurent Vivien

100 µm

P. Chaisakul et al., Optics Express (2012).

Static performance: optical transmission

Laurent Vivien

Energy consumption

Energy to charge the device **Energy/bit = 1/4 (CV_{pp})^2**

Energy dissipation of photocurrent Energy/bit = 1/B (I_{ph}V_{bias}) C ~ 62 fF Energy/bit = 70 fJ/bit (for a voltage swing of 1 V , 20 Gbps, 0.5 mW input power)

Integrated circuits based on Ge/SiGe QW ?

Challenge: coupling the light from silicon to Ge/SiGe QW

Waveguide integration on bulk Si

<u>1st Option: Waveguide based on the graded buffer</u>

(The light is guided in the relaxed buffer layer).

Challenge: Use the relaxed Si_{1-v}Ge_v buffer layer as a

low loss waveguide

- If y is too high => high propagation loss
- If y is too low => strong strains occur => dislocations

Waveguide integration on bulk Si

http://silicon-photonics.ief.u-psud.fr/

Laurent Vivien

Waveguide integration on bulk Si

Optical link on bulk Si, based on Ge/SiGe QW active devices and SiGe waveguide on graded buffer

- Insertion loss: < 5 dB
- Modulator bandwidth : 6 GHz
- photodetector bandwidth : 4 GHz

Integration on SOI

2nd option: decrease the thickness of the buffer layer

Challenge: keeping homogeneous and high quality layers

Evolution of Si-based modulators

Carrier depletion modulator MZi Energy/bit ~ 5 pJ/bit

Ring resonator modulator

Energy/bit ~ 0.7 pJ/bit

EA Ge/SiGe modulator energy/bit ~ 0.07 pJ/bit

Ultra low power consumption modulator energy/bit ~ few fJ/bit

http://silicon-photonics.ief.u-psud.fr/

- Motivation
- Main building blocks in photonics
 - $\sqrt{}$ Light propagation
 - $\sqrt{0}$ Optical modulation
 - > Principle
 - Physical effect
 - Recent advances
 - \checkmark Light detection
 - Ge photodiode
 - Avalanche PD
 - $\sqrt{1}$ Light emission
- ■Conclusion

Integrated photodetector on Si platform

Specifications:

- ✓ High bandwidth (> 10GHz)
- ✓ High responsivity
- ✓ Compact
- ✓ Low power consumption
- ✓ Compatible with Si technology

Integrated photodetector on Si platform

Specifications:

- ✓ High bandwidth (> 10GHz)
- ✓ High responsivity
- ✓ Compact
- ✓ Low power consumption
- ✓ Compatible with Si technology

r: Extinction ratio (depend on the modulation format) *Q*: Q-factor is given by the BER (For a BER of 1.10⁻¹², $Q \approx 7$)

Sensitivity

<u>Objective</u>: Reduce at the maximum *P*P_{min}
 → Reduction of the noise current
 → Increase the responsivity

niversite

Responsivity and Noise

RESPONSIVITY

Absorption

- Absorption coefficient
 - Layer quality
- Diode geometry
- Integration

Thermal noise

NOISE

$$\langle i_{jn}^2 \rangle^{1/2} = \sqrt{\frac{4k_B T \Delta f}{R_{\acute{e}q}}}$$

Carrier collection

- Electric field
- Recombination

$$\langle i_{sn}^2 \rangle^{1/2} = \sqrt{2q(I_{photo} + I_{obs})\Delta f}$$

Shot noise

Material Choice

Ge Photodetectors

10.0kV X7.00K 4.29µm

Europe: Univ. Paris Sud, CEA-Léti, Stuttgart Univ., Roma Univ. ... Asia: Tokyo Univ., A*Star, Petra, AIST, Chinese Academy of Sciences, ... North America: Intel, MIT, IBM, Cornell, Luxtera, Ligthwire, Kortura, Oracle ...

Ge photodetector: optical coupling

Detector geometry

CARRIER COLLECTION EFFICIENCY

MSM

- Strong field dependence
- High noise
- Non uniform electric field

PiN

- Uniform electric field
- Internal electric field (under 0V)

PIN diode

Two RPCVD steps to overcome lattice mismatch issue

Device Fabrication: Ge Growth

J.M. Hartmann et al., J. Crystal Growth, 274, 90-99 (2005)

PARIS

SUD

Device Fabrication: Ge Growth

- Post epitaxial thermal cycling to further reduce TDD in the Ge layer
- CMP step to remove protruded Ge
- SiO_2 encapsulation
- Ion implantation of Ge
 - $\sqrt{N-type}$: Phosphorus
 - $\sqrt{P-type}: Boron$
 - Rapid Thermal Anneal

Y. Yamamoto et al., Solid-State Electronics, 60-1, 2-6, (2011).

Device Fabrication: Contact and Metal

Lateral

- Oxide encapsulation
- Planarization
- Contact definition
 - $> 0.4 x 0.4 \mu m$ vias for metal filling (TiN/W)
 - ≻Ti/TiN/AlCu pad defined by etching

Circuit level integration

Source	Modulator	Photodetector
III-V on Si Hybrid laser	PN, PIN in Si	PIN Ge on Si
	Ion implantation in Si	Ion implantation in Ge
	Dopant activation for Si	Dopant activation for Ge
	Contacts on Si (silicide)	Contacts on Ge

The full integration increases the fabrication complexity and the overall cost.

Double Si/Ge/Si heterojunction

New Geometry

<u>Aim</u>: Use the same technological steps for modulators and detectors including doping, thermal annealing and contacts

p-i-n Si/Ge/Si Photodetector

\$\mathcal{R} ~ 1. 1 A/W @ 1550nm Dark current <nA @ -1V</td> Bandwidth 18GHz @ -1V 30GHz @ -2V

How to improve the sensitivity of the receivers?

Sensitivity of photodetectors

How to increase the sensitivity?

- λ Multiplexing
 - 40Gbits/s = 4*10Gbits/s
- Reduction of the TIA noise
- Increase the responsivity

Avalanche PD

Avalanche behaviour

 α : Ionization coefficient of electrons β : Ionization coefficient of holes

$$k = \frac{\beta}{\alpha} \text{ or } k = \frac{\alpha}{\beta}$$

At given multiplication region width:

•
$$M_{Ge} > M_{Si}$$

•
$$V_{b-Ge} < V_{b-Si}$$

Avalanche behavior

Shot noise

$$\langle i_{sn}^{2} \rangle^{1/2} = \sqrt{2q \left[\left(I_{photo} + I_{obs,m} \right) M^{2} F + I_{obs,nm} \right] \Delta f}$$

<u>Excess noise factor F</u> is defined as the ratio of the Gain variance on the mean square gain value

http://silicon-photonics.ief.u-psud.fr/

First Approach:

Separate Absorption, Charge and Multiplication(SACM) APD

APDs receivers

http://silicon-photonics.ief.u-psud.fr/

p-i-n avalanche photodiode: moderated gain and noise using « dead space » effect in Ge

In Germanium: $d \sim 28-42 \mathrm{nm}$ for E $\sim \! 300-200$ kV/cm

 $\underline{d/Wi} \sim 0.1 \rightarrow Wi < 500 nm$

Sensitivity of p-i-n APD

P-i-n APD receivers

• Classical p-i-n photodiode

P-i-n APD receivers

- Robust and reliable design
- « Simple » Fabrication
- Low dark current

DC characteristics

Wavelength: 1.55µm

94

Laurent Vivien

http:

RF characteristics

Eye diagrams without TIA

10GBit/s @ 0V (M=1)

http://silicon-photonics.ief.u-psud.fr/

Laurent Vivien

10Gbit/s eye diagram without TIA

Coupled optical power into Ge diode: -11.25dBm

P-i-n APD receivers

Motivation

- Main building blocks in photonics
 - $\sqrt{\text{Light propagation}}$
 - $\sqrt{}$ Optical modulation
 - $\sqrt{}$ Light detection
 - $\sqrt{}$ Light emission
 - > The approaches to emit light on silicon

Conclusion

Off-chip laser Fiber attachement & alignment High coupling losses Very expensive Non-integrated

Laser on silicon

courtesy: Blas Garrido

http://silicon-photonics.ief.u-psud.fr/

Laser on silicon

Attached laser Tight alignment tolerances Gold metal bonding Expensive

Off-chip laser Fiber attachement & alignment High coupling losses Very expensive Non-integrated

courtesy: Blas Garrido

Laser on silicon

Attached laser Tight alignment tolerances Gold metal bonding Expensive

Off-chip laser Fiber attachement & alignment High coupling losses Very expensive Non-integrated

Monolithic laser Si compatible

Not any alignments Highly integrable Low cost Electronic-photonic integration

courtesy: Blas Garrido

Germanium laser

► To indirect to "direct" bandgap SC

"The first Ge laser"; J. Liu, X. Sun, L.C. Kimerling, J. Michel : Presentation at Group IV photonics – San Francisco (September 2009).

An electrically pumped germanium laser

Rodolfo E. Camacho-Aguilera,¹ Yan Cai,¹ Neil Patel,¹ Jonathan T. Bessette,¹ Marco Romagnoli,^{1,2} Lionel C. Kimerling,¹ and Jurgen Michel^{1,*}

¹Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA ²PhotonIC Corporation, 5800 Uplander Way, Los Angeles, CA 90230, USA *jmichel@mit.edu

Abstract: Electrically pumped lasing from Germanium-on-Silicon pnn heterojunction diode structures is demonstrated. Room temperature multimode laser with 1mW output power is measured. Phosphorous doping in Germanium at a concentration over $4 \times 10^{19} \text{ cm}^{-3}$ is achieved. A Germanium gain spectrum of nearly 200nm is observed.

http://silicon-photonics.ief.u-psud.fr/

UNIVERSITE PARIS

รบว

université

C2N

Chrs

Laser on silicon

Attached laser Tight alignment tolerances Gold metal bonding Expensive

Off-chip laser Fiber attachement & alignment High coupling losses Very expensive Non-integrated

Monolithic laser Si compatible

Not any alignments Highly integrable Low cost Electronic-photonic integration

courtesy: Blas Garrido

Hybrid integrated laser

InP bonded laser to SOI CMOS No alignment Possibly to integrate Moderate cost

III-V integration on silicon

There are several ways to integrate III-V on SOI

Flip-chip integration of opto-electronic components

- Some strugged technology
- $\ensuremath{\textcircled{\odot}}$ testing of opto-electronic components in advance
- ⊗ slow sequential process (alignment accuracy)
- \otimes low density of integration

Hetero-epitaxial growth of III-V on silicon

collective process, high density of integration
 mismatch in lattice constant, CTE, polar/non-polar
 contamination and temperature budget

Bonding of III-V epitaxial layers

sequential but fast integration process
 high density of integration, collective processing
 high quality epitaxial III-V layers courtesy:GuntherRoelkens

Direct bonding of InP on structured SOI

InP wafer dicing

cealeti

Optical image after substrate removal

IR image after bonding

R&D use

Industrial process

InP dies bonded on an EIC wafer

^{300 μm} thinned down to 30 μm

Bonding interface courtesy: J-M Fédéli and L. Fulbert

InP die

http://silicon-photonics.ief.u-psud.fr/

Laurent Vivien

Tunable lasers

20 mA threshold at room temperature

>45dB SMSR, tuning range 45nm

courtesy: G.H. Duan

http://silicon-photonics.ief.u-psud.fr/

100

Laurent Vivien

Motivation

Main building blocks in photonics

- $\sqrt{\text{Light propagation}}$
- $\sqrt{0}$ Optical modulation
- $\sqrt{}$ Light detection
- $\sqrt{\text{Light emission}}$
 - > The approaches

Conclusion

- $\sqrt{\text{Electronic-Photonic convergence}}$
- $\sqrt{}$ Silicon photonics: Ecosystem
- $\sqrt{\text{Business}}$

100GbE (4x25G) WDM in QSFP

Modulators

Quad Small Form-factor Pluggable

25G Transmit eye with low power drivers from **Oracle** (<70mW/ch)

Proposed Solutions for All Reaches

Luxtera's 4 x 10 Gb/s Si Transceivers

calibration

http://silicon-pnotonics.ief.u-psuc.ir/

light out (more taps to the right)

113

UNIVERSITÉ DADIC

Top view of a flip-chipped laser on top of a CMOS die. The laser die is outlined by the dashed white lines.

Germanium photodetector integrated into CMOS, shown with 10-Gbps eye Sasan Fathpour, CREOL Laurent vivien

Molex' AOC with Luxtera Si Photonic Die

Silicon Photonic die

MEMS Laser Source

Fiber coupling

Intel's 4 x 12.5 Gb/s Silicon Photonics Link

http://silicon-protonics.ici.u-psuu.i/

UNIVERSITE

Sasan Fathpour, CREOL

Evolution of optical interconnect

 As distances go down the number of links goes up putting pressure on power efficiency, density and cost

Increasing integration of Optics with decreasing cost, decreasing power, increasing density

© 2011 IBM

The Si Photonic supply chain

Laurent Vivien

More than \$1B invested worldwide by public fundings !

Strong investment from the European Commission

- ✓ In the period 2002–2006, around 50 photonics research projects were funded under the EU's 6th research framework program (FP6) for approximately €130 million.
- ✓ Since the beginning of FP7, 65 R&D photonic projects, including organic photonics, have been selected so far with more than €300 million of EU funding.
- ⇒ A total of €430 million invested by the European Commission e.g. US\$ 580M

Japan : JISSO program

- ✓ \$300M invested in 10 years
- US : mainly DARPA programs
 - A \$44M DARPA program involving Kotura, Oracle, Luxtera, various Universities (Stanford, San Diego)
 - Orion also has a big program

Almost \$1B transactions for photonics in

datacenter!

Company	Date	Product	Transaction value	Acquirer	Rationale for transaction
Lightwire (US)	February 2010	Silicon CMOS optoelectronics interconnects / optical transceivers.	US\$271M	Cisco (US)	To face with increasing traffic in data centers / service providers
Luxtera AOC line (US)	January 2011	AOC line	US\$20M	Molex (US)	Luxtera may be changing strategy to become an IP licensing company. Molex had AOC product line for 12-channel AOCs with a product from Furukawa/Fitel based on a 1060nm InGaAs VCSEL.
COGO Optronics (CAN)	March 2013	InP modulators & lasers.	Est. < \$30M	TeraXion (CAN)	To access 100Gb InP modulator technology.
Cyoptics (US)	April 2013	InP-based photonic components.	US\$400M	Avago (US)	To strengthen products portfolio for 40Gb & 100Gb data centers applications.
Kotura (US)	May 2013	Si photonics & VOAs for data center.	\$82M	Mellanox (US)	To access 100Gb optical engine for data centers.
IPTronics (US)	June 2013	IC for parallel optical interconnects (drivers).	\$47M	Mellanox (US)	To access products / technologies for 100Gb optical engine.
Caliopa (BE)	September 2013	Si-based optical transceivers for datacoms.	\$20M	Huawei (CHINA)	To develop European-based R&D in Si photonics.

Laurent Vivien

© Copyright AIM Photonics 2015

Silicon photonics 2013-2014 market forecast in US\$M

- Silicon photonics devices market will grow from less than US\$25M in 2013 to more than US\$700M in 2024 with a 38% CAGR.
 - ✓ Emerging optical data centers from big Internet companies (Google, Facebook ...) will be triggering the market growth in 2018 (see following slides).

A broad range of application

SEMICONDUCTOR ENGINEERING

Home > Low Power-High Performance > Photonics Moves Closer To Chip

LOW POWER-HIGH PERFORMANCE

211

Photonics Moves Closer To Chip

Government, private funding ramps up as semiconductor industry looks for faster low-power solutions.

http://silicon-photonics.ief.u-psud.fr/

Laurent Vivien

nect

皇

n

Acknowledgments

Eric Cassan – Univ. Paris Sud Delphine Marris-Morini – Univ. Paris Sud

Jean Louis Malinge – Ex CEO of KOTURA (USA)

References

 $\sqrt{}$ Handbook of Silicon Photonics – CRC Press

 $\sqrt{\text{Yole report}}$

 Few figures, slides, illustrations provided from International school presentations: W. Bogaerts, G. Reed, L. Pavesi, J-M. Fédéli,

