

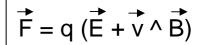
Plan de l'exposé

- Rappels
- Processus émissions, cathodes et canons
- Nouvelles sources
- conclusions

A la recherche de la source idéale

Qu'est-ce qu'un électron?

Une particule chargée (1897) E = mc²


$$q = -1.602 \times 10^{-19} C$$

$$q = -1.602 \times 10^{-19} C$$
 $m = 9.01 \times 10^{-31} kg$ $Eo = 0.511 MeV*$

Masse très faible!!

• Sensible au champ électrique **E** et magnétique **B** | $\overrightarrow{F} = q (\overrightarrow{E} + \overrightarrow{V} \wedge \overrightarrow{B})$

accélération

rotation

Paramètres relativistes

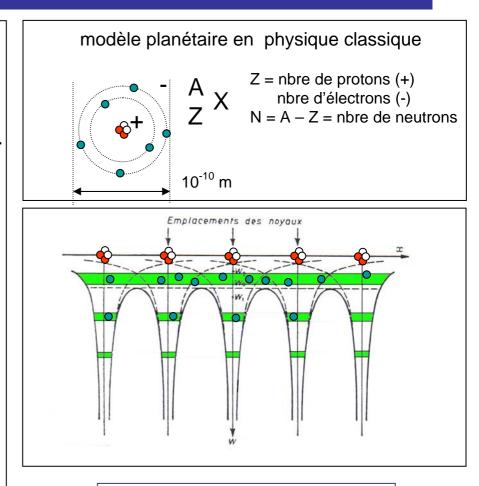
$$\beta = v/c^{**}$$
 vaut rapidement ~ 1

$$\gamma$$
 = E/Eo + 1 ~ E/Eo ~ 2 E Energie en MeV

*1 eV = énergie d'un électron sous une ddp de 1 V
**
$$c = 3 \times 10^8 \text{ m/s}$$

Rapidement relativiste et trajectoires hélicoïdales

Exemple :
$$E = 2 \text{ MeV}$$

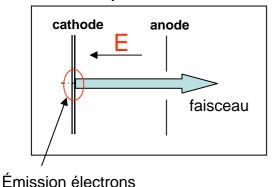

$$\gamma = 2/0.5 + 1 = 5$$

$$\beta = \sqrt{1-1/\gamma^2} = 0.9797$$

$$v = 2.94 \times 10^8 \text{ m/s}$$

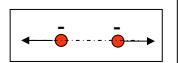
Où se trouvent les électrons?

- Matière = atomes = noyau (protons+neutrons) + électrons
- Les électrons sont liés au noyau par interaction EM et sont placés sur certaines orbites (énergies particulières discrètes)
 (modèle classique)
- Matière solide = ensemble d'atomes
 conducteur = électrons de valence
 mis en commun et réseau d'ions
- Il faut perturber la matière pour lui ôter ses électrons



Statistique de Fermi-Dirac

Densité électrons ~ 10²³ cm³


Comment fait-on un faisceau d'électrons?

Principe du canon

Faisceau = ensemble d'électrons

→ répulsion coulombienne

Quatre principes physiques d'émission

Qualités recherchées

- Faisceau Intense : courant élevé
- Cathode robuste : longue durée de vie
- Faisceau Brillant → 1/émittance
- Durée impulsion courte

Industrie

Recherche

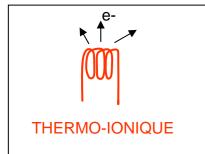
Processus d'émission

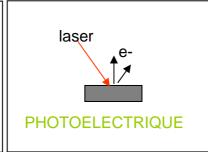
A partir de la matière **stable** :

•Si on chauffe suffisamment

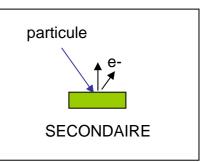
•Si on éclaire suffisamment

•Si on applique un fort champ électrique

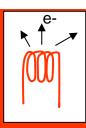

•Si on envois une autre particule


émission THERMO-IONIQUE émission PHOTOELECTIQUE

émission DE CHAMP


émission SECONDAIRE

autres: émissions ferroélectrique, plasma, ...


Plusieurs processus peuvent avoir lieu en même temps

Si la matière est **instable** naturellement : radioactivité β-

$$_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + e - + \overline{v}$$

$$^{18}_{9}F \rightarrow ^{18}_{8}O + e^{-} + \overline{v} \quad ^{T = 110 \text{ min}}_{ = 0.25 \text{ MeV}}$$

Spectre en énergie de l'électron et continu Temps émission 30 s à 30 ans

Emission Thermoionique

Loi de Richardson (1902)

$$Js = A T^2 e^{-W/(kT)}$$

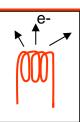
Pour augmenter Js : T↑ W↓

Js : densité de courant [A/cm²]

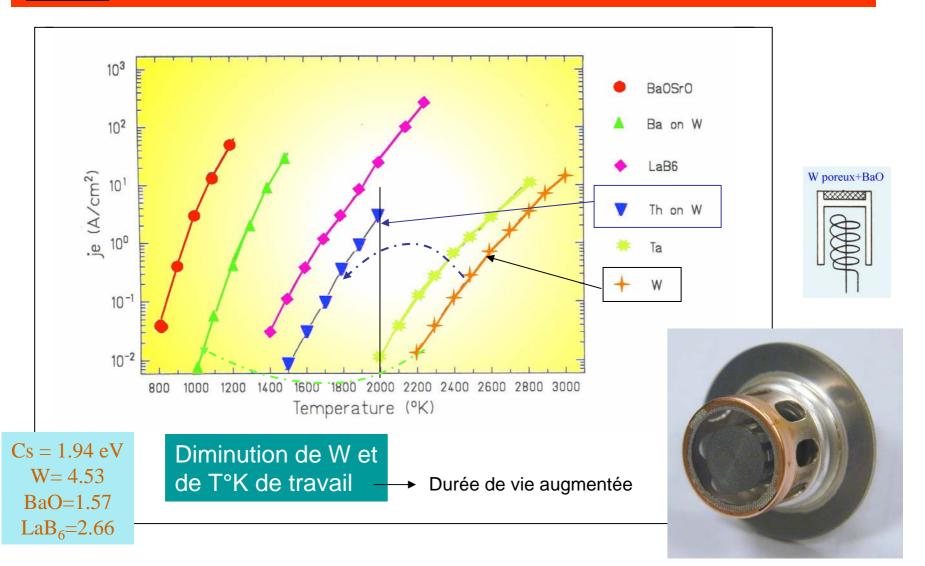
A ~ constante ~ 120 $[A/cm^2/K^2]$

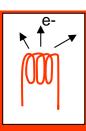
T : température [K]

k : constante de Boltzmann [eV/K]


W: travail de sortie [eV]

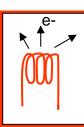
Matériau avec Tfusion élevée et W faible : corps pur n'existe pas !


En pratique : matrice en matériau réfractaire + élément chimique qui rend W plus faible (activation)


En unité pratique : Js ~ 120 T 2 e $^{-11600}$ W/T T [K], W [eV]

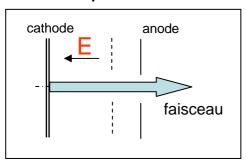
Exemples : pour Tungsten pur T = 2000 K, W = 4.5 eV Js ~ **0.005** A/cm² Tungsten W+Th T = 2000 K, W = 3.2 eV Js ~ **4** A/cm²

Cathodes Thermoioniques


Cathodes Thermoioniques

Composé	Matrice	Température (K)	Travail Sortie (eV)	Durée Vie (h)
ThO ₂ W2C fritté	W ₂ C	2200	2.7	10000 (3-4 ans)
BaO + SrO Dispenser L	W	1400	2.0	50000 (15 ans TV)
(Ba0,Ca0) ₃ +A W imprégnié	I ₂ O ₃ W	1300	2.0	50000 (klystron)
LaB ₆	Та	1700	2.8	1000

Température de travail pas trop élevée : dégazage, dégradation


Bonne durée de vie > 10000 h

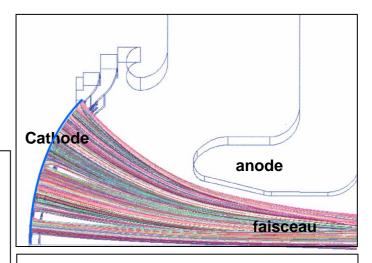
Si vide est mauvais $P > 10^{-5}$ mbar : cathode métallique

Canons Thermoioniques

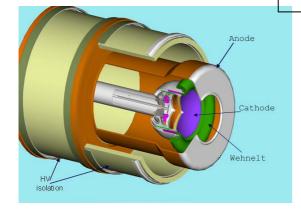
Principe du canon

V: 10 à 1000 kV

Child-Langmuir

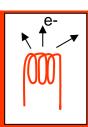

$$I = P V^{3/2}$$

I : courant [A]

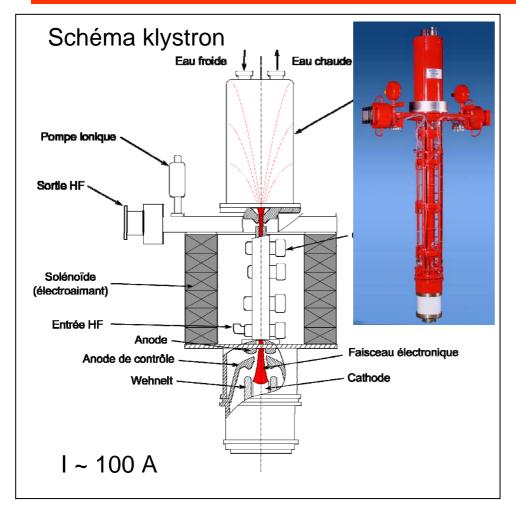

V: tension [V]

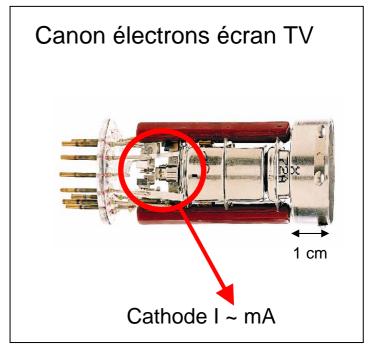
P: pervéance [A/V^{3/2}]

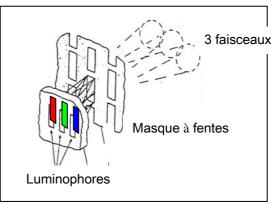
P=géométrie

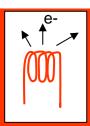


Les cathodes sont généralement sphériques Canons géométrie de Pierce

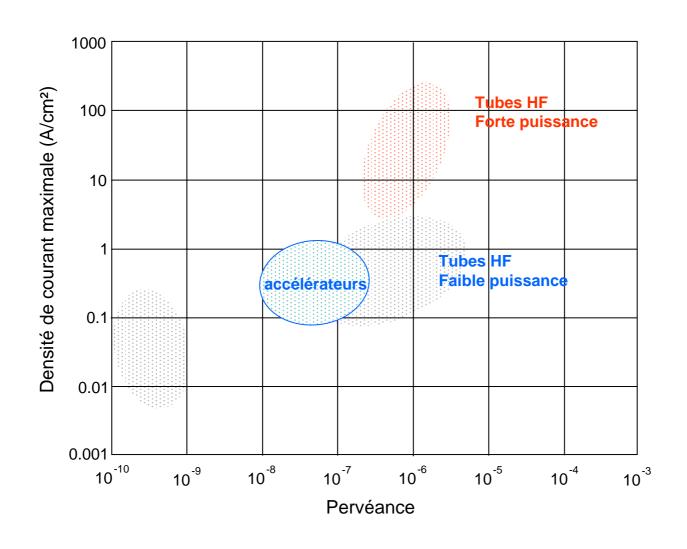


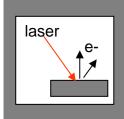

Le plus d'applications industrie + recherche

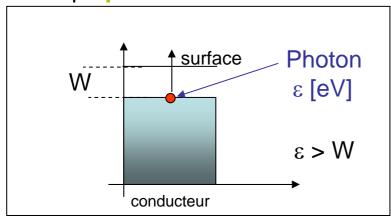

→ Robustesse + durée de vie



Canons Thermoioniques






Canons Thermoioniques

Emission Photoélectrique

Principe photoémission: interaction photon-électron

- Utilisation d'un laser (grand flux de photons)
- effet à seuil : longueur d'onde minimale
- Photoémission est instantanée

$$\lambda \text{ [nm]} = \frac{1240}{\epsilon \text{ [eV]}}$$

800 nm = 1.55 eV

532 nm = 2.33 eV

266 nm = 4.66 eV

Modèle à trois étapes

Loi de Fowler-Dubridge

 $Js = A T^2 I (1-R) F(x)$

Pour augmenter Js : T↑ I↑ R↓

Effet photoélectrique thermo-assisté

Js : densité de courant

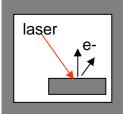
A ~ constante

T : température

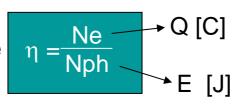
R : coefficent de réflexion

I : éclairement

F(x): fonction de Fowler


[A/cm²]

 $[A/W/K^2]$


[K]

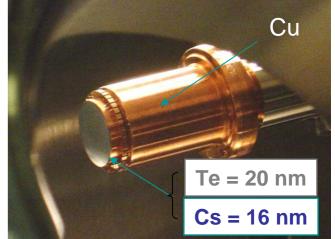
[W/cm²]

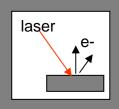
Effet photoélectrique : Einstein 1905, Fowler 1931

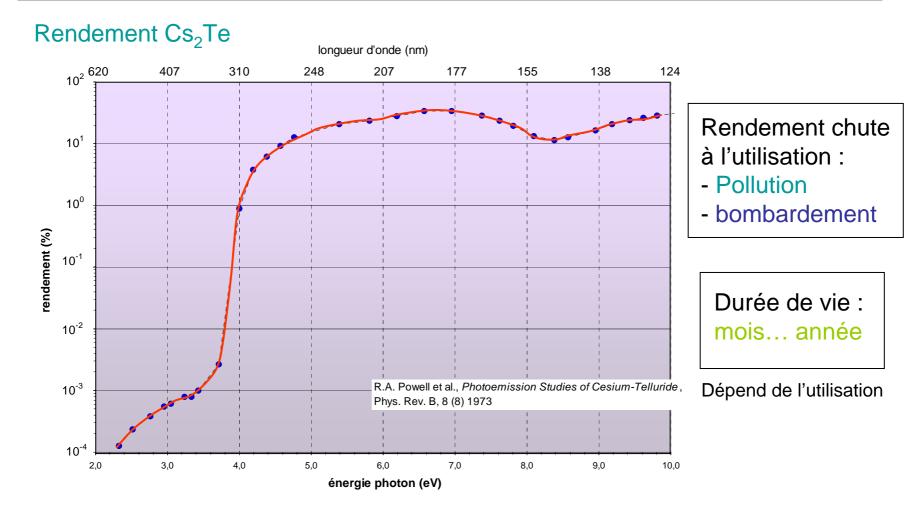
Rendement photoélectrique

Métaux : - mauvais rendement << 1%

+ bonne résistance

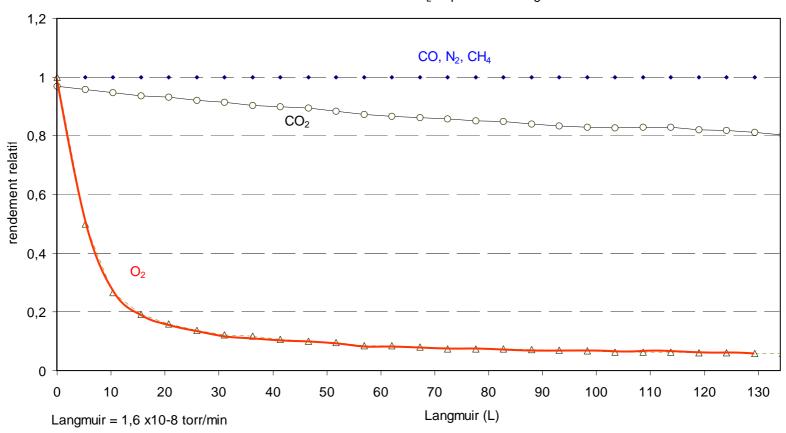

Semi-conducteur: + rendement ~ qlq %

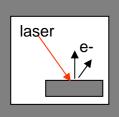

- sensibilité vide

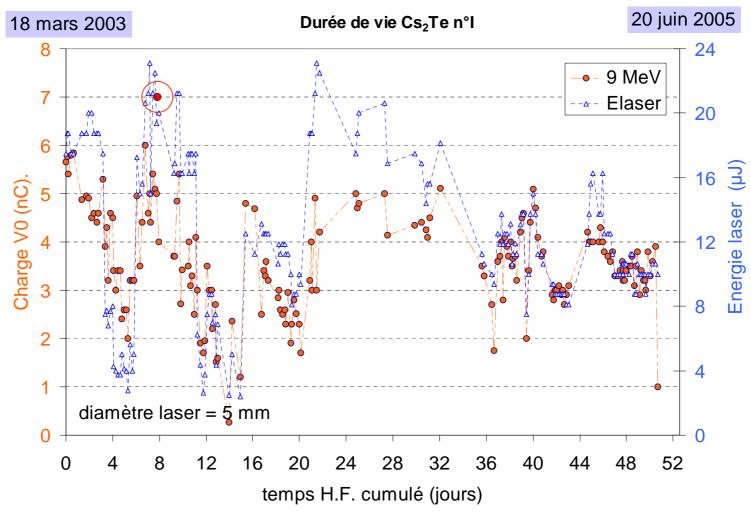

Matériau	266 nm	355 nm	532 nm
Cu	2.2 x10 ⁻⁶	8 x10 ⁻⁹	
Mg	5.0 x10 ⁻⁵		
Ta	3.0 x10 ⁻⁵		
K ₂ CsSb	10.0 x 10 ⁻²	16 x 10 ⁻²	3 x 10 ⁻²
Cs ₂ Te	8.0 x 10 ⁻²		


Conducteur : W travail de sortie ou semi-conducteur : AE+BI

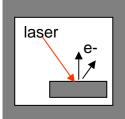
Photocathode Cs₂Te - ELYSE



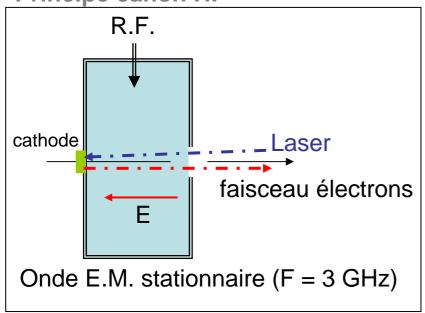


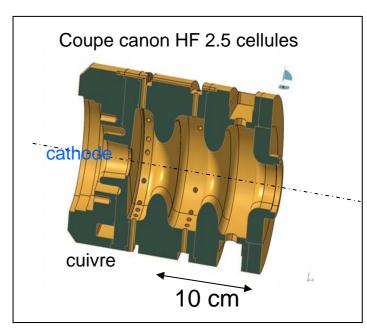


Pollution de Cs₂Te par différents gaz



F. Sabary et al., Auger and X-ray photoemission study on Cs2Te photocathodes, J. Appl. Phys. 80 (5) 1996


ELYSE – Laboratoire Chimie Physique, Orsay

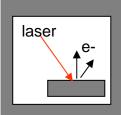


Canons Photoélectriques

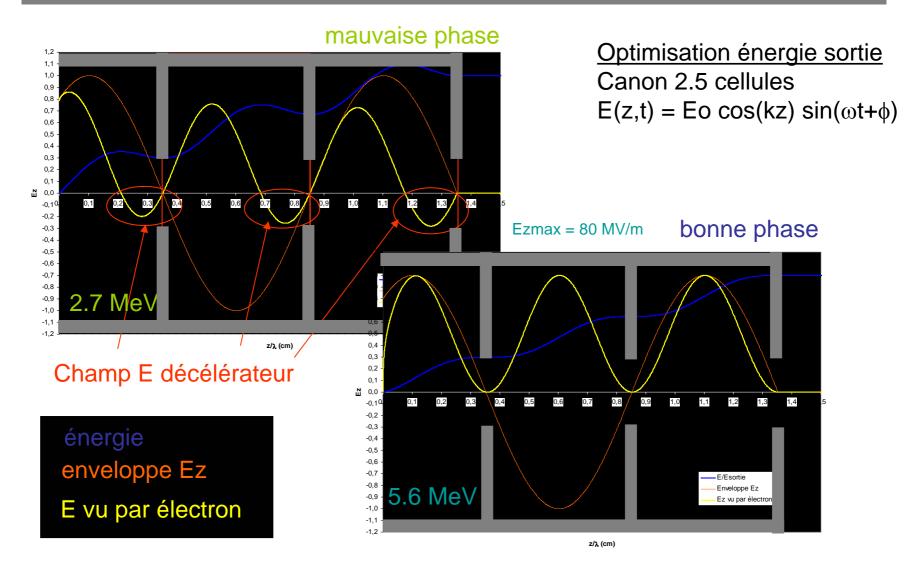
canon HF

Principe canon HF

Design par simulation


Avantages:

Impulsion laser courte : faisceau électrons courts (ps)


Faible dispersion énergie < 1%

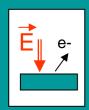

Possibilité électrons polarisés (AsGa)

Photo-injecteurs

Canons Photoélectriques

Emission de Champ

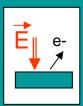
Application d'un champ électrique intense (E > 1 GV/m) **pertube** la matière : électrons **peuvent sortir** de la matière (effet tunnel)

Js = k1
$$\frac{E^2}{W}$$
 e $(k2 \frac{W^{3/2}}{E})$

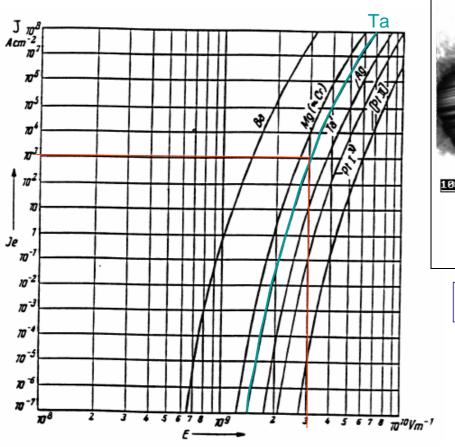
Pour augmenter Js : E↑ W↓

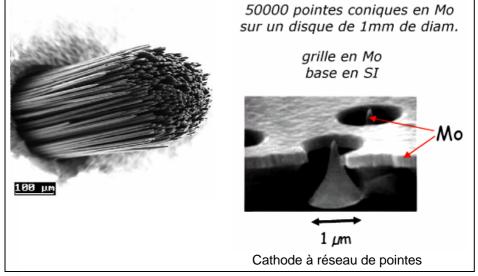
Js : densité de courant [A/cm²]

k1, k2 ~ constante


E : champ électrique [V/m] W : travail de sortie [eV]

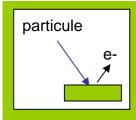
Matériau avec W faible : meilleur photoémetteur = meilleur émission de champ


Augmenter E: effet de pointe renforcement du champ électrique local $E \sim \beta E$ $\beta \neq 10$ à 100

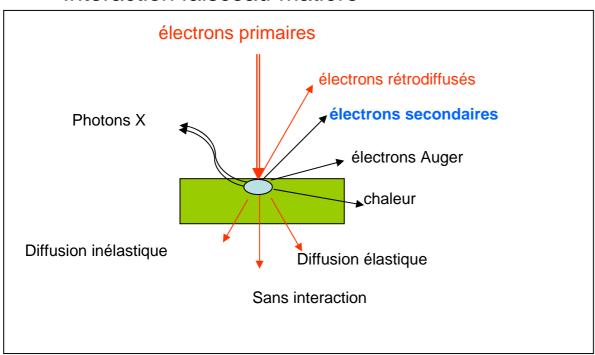

E ~ 1 GV/m : Effet Schottky W = W - dW

Thermoémission et Thermoémission de champ

Cathodes émission de champ



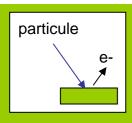
Haute intensité, fragilité

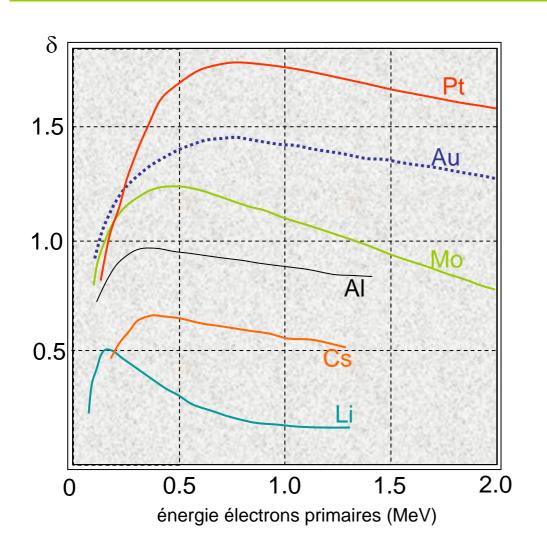

Difficulté fabrication cathode + coût

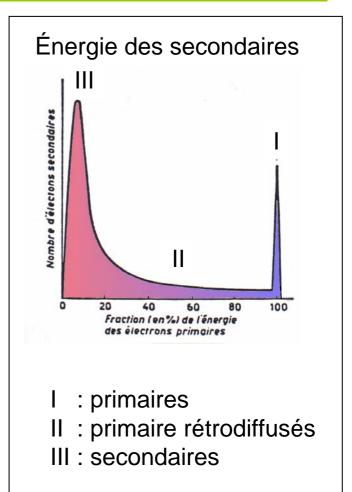
- → Microscopie électronique
- → écrans plats

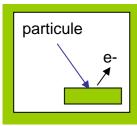
Emission d'électrons par une surface soumise au bombardement d'une particule

Interaction faisceau-matière

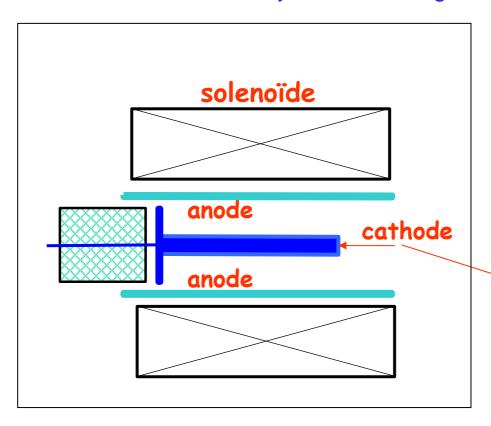



Taux d'émission

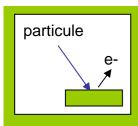

$$\delta = \frac{\mathsf{Nep}}{\mathsf{Nes}}$$

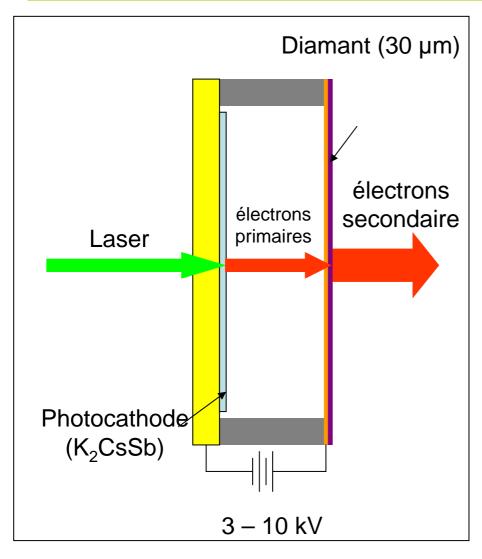

 δ = f(Ep, matériau)

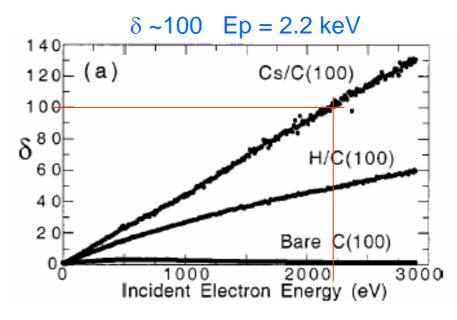
 $\delta \sim 0.1 \ \dot{a} \ 10$

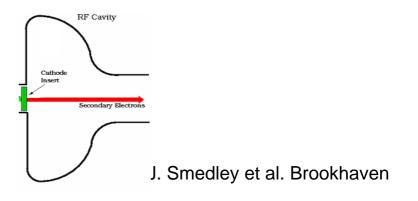




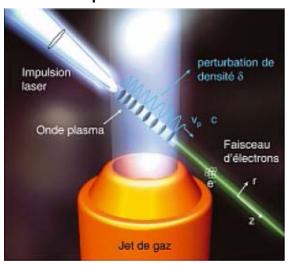

Secondary Emission Magnetron Injection Gun (SEMIG)






Pièces du canon

I ~ 40 A



Nouvelles sources d'électrons

Limitation du gradient accélérateur dans les cavités

- Accélérateur de plus en plus grands (recherche)
- Utilisation des plasmas (milieu ionisé) [1980 et 1990]

Source plasma : focalisation d'un laser puissance crête **TW** (durée fs) !

- + énorme gradient accélérateur ~ GV/m 100 MeV en 1 mm
- + durée impulsion ultra-courte ~ 10 fs
- maîtrise dispersion énergétique
- faible charge
- fiabilité

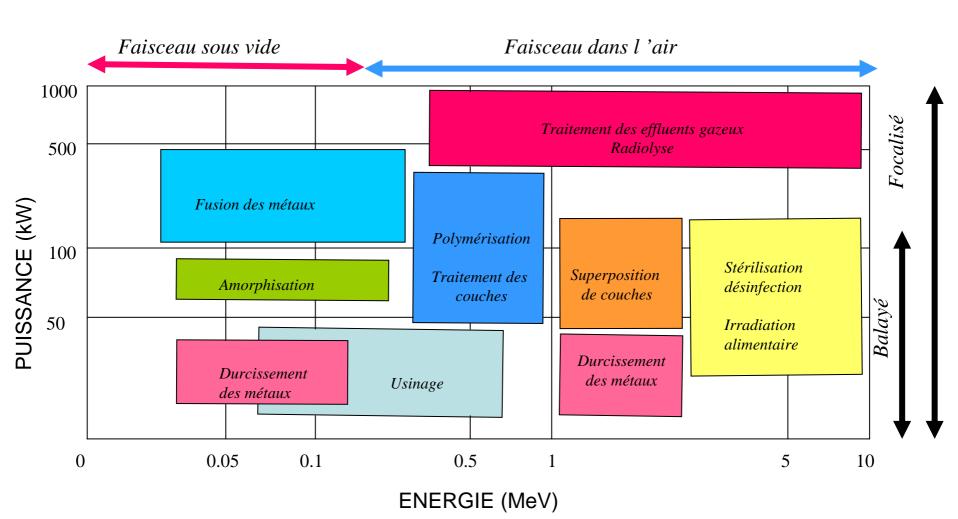
Nanotubes de carbones : 1 -10 nm diamètre, longueur $\sim \mu m$ Facteur β énorme ~ 1000 , champ E appliqué plus faible

Conclusions

Qualités recherchées

Faisceau Intense : courant élevé
 Cathode robuste : longue durée de vie
 Faisceau Brillant
 Durée impulsion courte

Recherche


Sources électrons les plus utilisées : canons thermoioniques

Quantité applications des faisceaux d'électrons, industrie et recherche

Accélérateurs électrons industriels

Gamme énergie	Basse	Moyenne	Haute	Haute
Energies	10 à 300 keV	300 keV à 1 MeV	0.1 MeV à 10 MeV	1 à 16 MeV
Courant	10 à 2000 mA	25 à 300 mA	10 à 500 mA	
Puissance	1 à 100 kW	5 à 300 kW	5 à 700 kW	
Prix	0.5 à 2 M\$	0.5 à 2 M\$	1 à 8 M\$	0.3 à 2 M\$
Applications	Soudure métaux, découpage, percage, vaporisation	Traitement des polymères, des plastiques, isolant pour câbles, du caoutchouc des pneus, des plastiques,	Traitement de surface, des polymères, des eaux usées, irradiation, stérilisation pour le médical et la nourriture,	Contrôle non destructif par rayons X (sécurité)
Taille marché	150 M\$ +8%	100 M\$ + 10%	70 M\$ + 80%	
Technique accélération	HT externe	Cockroft-Walton, Dynan Rhodotron	Linacs	

Applications industrielles

