

Utilité des accélérateurs, types de machines, physique nucléaire et de particules associées

F. Zomer zomer@lal.in2p3.fr

Plan

- 1) Introduction à la physique des particules Les particules élémentaires et leurs interactions Les détecteurs de physique des particules
- 2) Les accélérateurs pour la physique des particules
- 3) Collisionneurs ppbar versus collisionneurs e+e- : SPS versus LEP
- 4) 'Overview' de deux installations/projets majeurs

Le LHC

Un grand projet aujourd'hui : ILC

- 5) Applications de l'interaction laser-electron
- 6) Accélération laser-plasma

• Sources

- E. Baron (GANIL)
- M. Costa (CMS/Turin)
- A. Mueller (DA IN2P3/IPN)
- R. Poeschel (ILC/LAL)
- F. Richard (ILC/LAL)
- MH Schune (LHCB/LAL)
- L. Serin (ATLAS/LAL)
- D. Rousseau (ATLAS/LAL)
- A. Stocchi (BaBar/SuperB/LAL)
- A. Variola (SERA/LAL)
- I. Wingerter (ATLAS/LAPP)
- Collègues du KEK : T. Omori, H.Shimizu, J. Urakawa
- <u>http://www.in2p3.fr/actions/formation/DetAMesure-09/SupportDetAMes09.htm</u>
- <u>http://elementaire.web.lal.in2p3.fr/</u>
- Site www du CERN, FERMILAB, ...

Introduction : Les particules élémentaires et leurs interactions

La complexité est reductible

Les particules : les constituants élémentaires de la matière

Les particules aujourd'hui: la matière extra..ordinaire

Dans la vie de tous les jours nous expérimentons les particules de la première famille....

Les quarks n'existent pas à l'état libre ! •Hadrons : particules constituées de quarks •Baryons : 3 quarks (ex: neutron, proton) •Mésons : 2 quarks (ex. les pions, mésons B)

<u>Petite histoire</u>: lorsque la découverte du muon fût annoncée, le physicien I. Rabi dit :

Ça reste une très bonne question.....

Les quatre forces fondamentales

Force faible

Gravite

Les forces vues par les physiciens des particules..

Le messager de l'interaction est une particule.

Il y a 4 interactions : elles se différencient par :

- type de messager (c'est à dire de la particule)

- portée de l'interaction (qui dépend de la masse du messager)*

* Plus le ballon est lourd, plus les joueurs doivent être proches

FORCE	Gravité	Faible	Electromagnétique	Forte
Portée par	Graviton (non observé)	W ⁺ W ⁻ Z ⁰	Photon (γ)	Gluons (g)
Agit sur	Toutes les particules	Quarks et leptons	Quarks et leptons chargés et W ⁺ W [−]	Quarks et gluons
Responsabe de	Attraction des objets massifs	Désintégrations des particules Particules stables	Attraction entre particules chargées	Liasions nucléaires ←+ +→
Agit à	Distance infinie	Courte distance Masses W ⁺ W ⁻ Z ⁰ 'très très' lourdes	Distance infinie Masse photon=0	Faible à grande distance Forte à courte distance

Le Modèle Standard: Les particules élémentaires+leurs intéractions

Le Modèle Standard codifie tout ce que l'on observe : Matière, Interaction, Unification

Mais le Modèle Standard ne peut pas expliquer pourquoi les particules ont une masse

Détermine les masses des particules de matière et des particules d'interaction

Robert Brout 1928-2011

François Englert 1932-

Peter Higgs 1929-

Également : G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble,

2013 NOBEL PRIZE IN PHYSICS François Englert Peter W. Higgs

« pour la découverte théorique d'un mécanisme qui contribue à notre compréhension de l'origine de la masse des particules subatomiques, qui a récemment été confirme par la découverte de la par Boson de Higgs ntale prédite, par les expériences ATLAS et CMS au grand collisionneur de hadrons (LHC) du CERN » Est-on sur de l'avoir découvert ?

•Certitude au sens physique, non mathématique!

•On évalue : « la probabilité pour voir ce que l'on voit si il n'y avait que du bruit de fond » (en combinant toutes les informations dont on dispose, et en tenant compte de toutes les incertitudes)

•Si cette probabilité est meilleure que 5 écarts standards, on peut, « légitimement » parler de découverte .

•5 écarts standards :

• probabilité ~3 10⁻⁷, une chance sur 3 millions,

 •ou bien ~ la probabilité de tirer les quatre as d'un jeu de 52 cartes, dans l'ordre

Quelques grandes questions 1/4 ...

Pourquoi les constituants de la matière ainsi que les particules qui véhiculent les interactions ont-elles des masses si disparates ?

Composition de notre univers ?

Matière autre que celle du Modèle Standard

L'expansion de l'univers est plus rapide qu'attendu (Big Bang + relativité générale) ⇒ quelque chose d'autre doit entrer en jeu : "energie noire"

Quelques grandes questions 2/4 ...

ALEPH 20 DELPHI L3 30 - OPAL Pourquoi trois familles ? σ_{had} [nb] Movenne des mesures A présent on n'a observé que trois pour les 4 expériences (incertitudes x 10 familles... sur le dessin) 10 86 88 90 92 94 Ecm[GeV] ÉLÉMENTAIRE

Pourquoi quatre interactions ?

Unification ?

(cf Maxwell pour l'électricité et le magnétisme)

Quelques grandes questions 3/4 ...

Univers actuel : le fruit d'un petit déséquilibre qui a mené à une très légère surabondance de matière

Quelle est la source du déséquilibre entre matière et anti-matière ?

Quelques grandes questions 4/4 ...

Compréhension de l'interaction forte :
Onfinement des quarks ?
→ cf cours Alex
Omment les quarks s'hadronisent ?

Comment 'voit-on' et/ou comment produit-on toutes ces particules élémentaires ?

Dans la nature : les rayons cosmiques

•1912 : V.F Hess mesure la radioactivité en altitude et démontre l'existence des rayons cosmiques

Jusqu'après la seconde guerre mondiale, les rayons cosmiques vont être analysés (ex.
Chambres à brouillard du pic du midi)

> •De nombreuses particules tels le muon, pion,kaon, vont être découvertes

•Aujourd'hui on les étudie à nouveau (ex. AUGER) pour étudier des particules d'énergies ultra hautes

Simulation d'un électron

Electrons : il produisent une gerbe d'électrons et photons secondaires très compacte Ils sont tout de suite arrêté par la matière Hajo Drescher, Frankfurt U.

Simulation d'un muon

Les muons interagissent très peu avec la matière ils ionisent la matières lors de leur passage

Simulation d'un hadron

Les Hadrons :

Ils pénètrent beaucoup PLUS que les électrons/photons dans la matière Ils interagissent avec les noyaux et ils produisent *une gerbe hardonique*

Hajo Drescher, Frankfurt U.

Un seul croisement

Collisionneurs circulaires $\sqrt{s}=E_1+E_2$ (p de 1TeV $\sqrt{s} = 2$ TeV) croisements répétitifs Rayonnement synchrotron

Comment 'manipule' t-on les particules chargées (cf. cours Alex. Muller)

$$\vec{F} = q\vec{E}$$

Comment 'manipule' t-on les particules chargées (cf. cours Alex. Muller)

$$\vec{F} = q\vec{v} \wedge \vec{B}$$

Les détecteurs en physique des particules

Accélérateur circulaire / synchrotron

On 'voit' les particules dans de gigantesques détecteurs ('voir' = reconstruction à partir de signaux électroniques)

Dans les détecteurs de traces on mesure l'ionisation identifications des particules à '**BASSE ENERGIE**' (CF. cours Alex)

Grâce au champ magnétique on mesure les impulsions des traces chargées Ex : événement simulation Higgs→ZZ→4 muons

Find 4 straight tracks.

Calorimetre pour la mesure de l'energie et l'identification des particules à haute énergie

Les électrons et photons sont arrêtés 'tout de suite' Les hadrons peuvent pénétrer beaucoup plus loin avant d'interagir

exemple : µ cosmiques dans CMS

Événement avec 4 jets
Run Number: 177531, Event Number: 183764 Date: 2011-03-13, 18:20:50 CET

Cells:Tiles, EMC, EMEC, HEC

Événement avec beaucoup de traces chargées

1

Run Number: 177531, Event Number: 183764 Date: 2011-03-13 18:20:50 CET

Comment analyse t'on les données des détecteurs

- On cherche des topologie d'évènements caractéristiques des signaux attendus
 - Simulation de la nouvelle physique Et du détecteur
 - Recherche de critère discriminant la physique connue de la nouvelle physique attendue
- On mesure très précisément les paramètres du modèle standard
 - On compare au calcul théorique incluant ou non de la nouvelle physique

2 électrons 2 muons

Exemple Higgs qui donne 4 leptons

4 muons

Exemple : la découverte du boson de Higgs

Les accélérateurs à hautes énergies

Deux types de collisionneurs :

•Électron-positrons

-'Machine de précision'

•Hadron-hadron

-'Machine de découverte'

Collisionneur e⁺e⁻: ex. la production du boson Z⁰ au LEP

- → On connaît bien l'énergie et la nature de l'état initial
- ➔ Collisions 'propres'

Collisionneur pp (ou ppbar) : ex production du Higgs (au LHC/TEVATRON)

P,Pbar sont 2 particules composées de quarks/gluons → On ne connaît pas l'énergie et la nature de l'état initial... gluon Higgs M_H≈ 120GeV? gluon p

Mais il y a une grosse différence entre électrons et protons : le rayonnement synchrotron !

- Lorsqu'une particule chargée tourne dans un champ magnétique elle perd de l'énergie en rayonnant des photons (rayonnement de freinage ou bremsstrahlung)
- On peut montrer que la puissance perdue par une particule

•Il faut que des cavités accélératrices RF compensent la perte de puissance à chaque tour

Au-delà d'une certaine énergie il est plus rentable de passer d'un collisionneur circulaire à un collisionneur linéaire
EX. :

•Le LEP de circonférence 27km : E_{beam}~50GeV-100GeV

•L'ILC accélérateur linéaire de ~30km : E_{beam} = 250GeV-500GeV

Le <u>rayonnement synchrotron</u> limite l'énergie communicable aux électrons :

Comparaison (CERN) :

 ↓ LEP : E_e = 108 GeV r = 3 096 m P = 61 TeV/s par électron

 ↓ LHC : E_p = 7 000 GeV r = 2 778 m P = 0,31 eV/s par proton

Mais pas aux protons !

C'est pour ça que le LHC est un collisionneur circulaire ! Et le futur ILC un collisionneur linéaire ...

Les accélérateurs à hautes énergies

Quelles sont les contraintes pour observer de la 'nouvelle' physique aujourd'hui ?

Pour voir des phénomènes rares il faut :

Premièrement : Beaucoup de particules par paquet et beaucoup de paquets → fort courant

Mais ca ne suffit pas : Il faut les 'concentrer' au maximum

Mauvaise focalisation...

Les particules ont peu de chances de se rencontrer ...

Nb d'interactions/seconde

Bonne focalisation !

Les particules ont toutes les chances de se rencontrer !

(Si faisceaux identiques et gaussiens)

C'est le facteur de luminosité

 $J_{Bunch}N_1N_2$

 $taille^2 + taille$

Mais un faisceau de particules chargées ne se focalise pas comme un faisceau lumineux ... x

La taille d'un faisceau de particules chargées focalisé par un ensemble d'aimants focalisant :

Taille en y=

$$\sqrt{\frac{\beta_{y}\varepsilon_{y}}{E/m}}$$

 β_y est le facteur focalisant des aimants

Donc : pour une fonction β_y donnée (=système d'aimants) + émittance petite + taille faisceau petite pour une émittance donnée + énergie des faisceau grande + taille faisceau petite

Donc : il faut créer des faisceaux à fort courant et à faible émittance pour faire de la physique des particules !!! Note : une fois créée, il faut aussi conserver la bonne émittance ...

Comment faire des faisceaux d'électrons de de faibles émitances?

c.f. cours H. Monard

Pulses lasers 'spéciaux' : (ex. TTF2/DESY) •UV:266nm •20 µJ/pulses •3000pulses@5Hz

2°: utiliser le rayonnement sychrotron

On fait tourner les électrons dans un anneau où ils rayonnent

- •En rayonnant le faisceau se 'compactifie'
- •Pour les accélérateurs circulaire : c'est gratuit !
- •Pour les collisionneurs linéaires : on ajoute un anneau !
 - •À l'ILC le *damping* ring DOIT réduire l'émittance d'un facteur ~200 !
 - •Tout ça au rythme de 3000 paquets @ 5Hz ...
 - •Soit ~200ms dans le damping ring...

Comment obtient t'on de faibles émitances avec des protons/antiprotons ?

Technique complexe d'analyse du signal

→ Sans cette technique 'rien' ne serait sortie du SPS !

Ex. 2 : LE TEVATRON de FERMILAB (découverte du quark top)

En résumé

- Les accélérateurs du futur visent :
 - Des hautes luminosités
 - En augmentant le nb de particules par paquets
 - Limite liée à la consommation électrique & à l'appareillage
 - En augmentant la fréquence des paquets
 - Limites thermiques canon et effet paquet/pacquet
 - En diminuant l'émittance
 - Contrôle de l'émittance durant la propagation du faisceau
 - Contrôle des nanobeam au point d'interaction
 - Les hautes énergies
 - Cavité accélératrices à for gradient
 - » CLIC vise 100MV/m (technologie 'drive beam')
 - » ILC vise 35 MV/m (technologie Supra)

Illustrations

- 1) 2 accélérateurs du CERN : Collisionneurs ppbar versus colisionneur e+e-SPS versus LEP
- 2) 'Overview' de deux installations/projets majeurs
 - 1) Le LHC
 - 2) Un grand projet aujourd'hui : ILC
- 3) Applications de l'interaction laserélectron

Le CERN : la Science à l'échelle Européenne depuis un demi-siècle

Qui travaille au CERN ?

Le CERN..... jusqu'à très récemment

- avec le PS comme point de départ, en opération depuis les années soixante, le CERN constitue aujourd'hui le plus grand complexe accélérateur du monde
- les synchrotrons du CERN accélèrent des types de particules différentes: électrons, positrons, protons, antiprotons et ions lourds
- LEP était un collisionneur électrons-positrons de 2 × 100 GeV

Alex Mueller

LEP : 27 km de circonférence 100 m de profondeur en moyenne

Une des grandes découvertes du CERN en collisionneur Ppbar le SPS

Découverte des bosons W[±] et Z⁰ au SPS

450 GeV protons 158 GeV/nucléon ions Pb 2πR = 6,9 Km 744 dipôles, 216 aimants de focalisation Section de la chambre à vide : 10 x 5 cm

Ecole IN2P3 : accélérateurs

51

Les mesures de précision en collisionneur e+e- au CERN: Le LEP

Mesures de précision au LEP 1989-2001

Pourquoi mesurer précisement m_w?

Mais la précision a un prix ! Ex. :La mesure précise de l'énergie des faisceaux au LEP

➔ nécessaire pour réduire les incertitudes expérimentales :

Ces mesures se font en étudiant les trajectoires des particules chargées dans les champs magnétiques des électroaimants →Dépend de la longueur de la trajectoire (~27km)

→ Dépend des courants parasites dans les alims des électroaimants !

Les surprises du LEP

Mesure de l'énergie sur 24h

Le pb vient du fait que l'on ne mesure pas en permanence l'énergie des faisceaux ! → Il faut donc extrapoler sur plusieurs heures ...

Sensibilité aux courants parasites induits par le
TGV Paris-Genève !
→effet plus important que les marées terrestres !!!

Variation de la longueur du LEP corrélée avec la quantité d'eau dans les montagnes

Avec le niveau d'eau dans le lac Lémant !!!

Enorme effort sur la compréhension et sur les performances de L'accélérateur ...

LE LHC
Le LHC : LE collisionneur du CERN

The Large Hadron Collider (LHC)

Collisions at LHC

CN8 Harch 90 v1

Alex Mueller

Pour comparer...

Energie d'un proton dans le LHC : 7 TeV c'est à dire 7.1012 eV

1 eV c'est une quantité infime d'énergie 1 eV = $1.6 \cdot 10^{-19}$ J (c'est l'énergie d'un photon du laser infrarouge YAG)

$$\begin{split} m_{gu\hat{e}pe} &= 1g \,=\, 5.8 \cdot 10^{32} \; eV/c^2 \\ v_{gu\hat{e}pe} &= 1m/s \; \rightarrow E_{gu\hat{e}pe} \,=\, 10^{-3} \; J \,=\, 6.25 \cdot 10^{15} \; eV \end{split}$$

Ceci dit...dans le LHC... L'énergie totale dans les faisceaux est de : 10^{14} protons × $14 \cdot 10^{12}$ eV ≈ $1 \cdot 10^{8}$ J

qui correspond à

Ce qui est exceptionnel dans le LHC, c'est qu'il concentre l'énergie dans un espace environ mille milliards de fois plus petit qu'une guêpe !

Les paquets de protons sont accéléres, guidés et focalisés tout au long des 27 km grâce à un système complexe d'aimants supraconducteurs.

Au total il y a 6228 aimants supraconducteurs

ATLAS, CMS, LHCb and ALICE quatre expériences pour tenter de répondre aux questions ...

La Construction du LHC

- Somme toute, la construction du LHC a avancé bien, malgré problèmes budgétaires et industriels
- Le premier faisceau a tourné en 2008
- Les Photos montrent des travaux relatifs à la contribution "exceptionnelle" de la France (contrats CEA-CERN-CNRS)
- mais beaucoup d'autres pays, y compris des "nonmember states" font de gros efforts
- String 2", section prototype contenant des aimant dipoles supraconducteurs

✓ "SSS 3"
les Sections Droites
Courtes contenant
les Qudrupoles
supraconducteurs
focalisants

L'usine cryogénique > prototype (pompes et compresseurs pour hélium superfluide

Alex Mueller

ATLAS et CMS : les deux détecteurs géants du LHC

La collaboration Atlas

Vue du détecteur ATLAS au LHC

Le projet International Linear Collider

Buts :

- •Machine à Higgs, machine à top
- •Mesures de précisions pour essayer de mettre en défaut le modèle standard
- •Recherche de nouvelle physique

Le problème avec les hautes énergies :

La probabilité qu'un électron interagisse avec un positron est en 1/Ebeam !

Faible émittance

 Il faut la garder dans le LINAC de ~15km !
Contrôle micrométrique de la position des éléments du LINAC !

 Comment faire des positrons polarisés

Simplify schematic view of the ILC

Comparaison des futurs collisionneurs linéaires et du LEP

Туре	LEP200	ILC500	CLIC500
Vertical beam size in nm	4000	5.7	2.3
Total P MW	65	216	129.4
Luminosity 10**31 (%)	5	1500	1400
Interval between bunches ns	>>>	176	0.5
Gradient MV/m	8	31.5	100

De nombreux enjeux technologiques → R&D accélérateurs nécessaire

Test Facilities (accélérateur dédiés aux développements des nouvelles techno pour l'ILC)

exemples	Deliverable	Date		
Optics and stabilisation demonstrations:				
ATF/Japon	Generation of 1 pm-rad low emittance beam			
ATF-2	Demo. of compact Final Focus optics (design demagnification, resulting in a nominal 35 nm beam size at focal point).			
	Stabilisation of 35 nm beam over various time scales.	2012		
Linac high-gradient operation and system demonstrations:				
TTF/FLASH	Full 9 mA, 1 GeV, high-repetition rate operation	2009		
STF/Japon & ILCTA- NML	Cavity-string test within one cryomodule (S1 and S1-global)			
	Cryomodule-string test with one RF Unit with beam (S2)	2012		

STF : ILC Cryostats and Cavities for Main linacs

1 cryomodule contains 9 neodium cavities (E_{acc} = 31.5MV/m on average, each having a length ~ 1m)

- Total ~1700 cryostats, ~16000 cavities.
- 3 cryostats to be driven by one 10MW L-band klystron
- Total 560 RF units in e+/e- main linacs

De la conception à l'exploitation

III. Utilisation de l'interaction Laser-électron

- ✓ Introduction : faisceau laser
- ✓ Les processus d'interaction laser-électrons
- ✓ La diffusion faisceau d'électron + faisceau laser
 - ✓ Les applications à basse énergie
 - ✓ Les applications à moyenne énergie

Le laser et les ondes électromagnétiques

→ faisceaux lumineux peu divergent qui se propagent 'autour' d'un axe

Laser continu

Qu'est ce qu'une onde: les ondes à la surface de l'eau

trout

Les ondes 'interfèrent'

Ondelettes issues du trou A et du trou B entre la plaque et le détecteur Figure d'interférence Courbe donnant l'amplitude des interférences au niveau du détecteur

Longueur d'onde = λ

Le faisceau laser est une onde 'electromagnétique' qui se propage dans le vide ...

Rayonnement des ondes électromagnétiques

Une charge + et une charge − qui oscillent → rayonnement une onde elm

Désexcitation d'un atome

(c) De-excitation with emission of a photon

Propagation décrite par les équations de Maxwell

Figure 3.32 The \vec{E} -field of an oscillating electric dipole.

(d)
L'onde est décrite par un 'Champ Électromagnétique'

Champ électrique oscillant

$$\vec{\mathrm{E}}(\vec{r};t) = \vec{\mathrm{E}}_0 \cos\left(2\pi v t - \vec{k} \cdot \vec{r}\right)$$

et

Champ magnétique oscillant

B : perpendiculaire à E dans le vide et les milieux isotropes

Longueur d'onde λ Fréquence $v=c/\lambda$

Le champ électromagnétique est 'vectoriel' : champs E et B

Exemple de 'champ vectoriel' : Le champ de vitesse du vent

Exemple de 'champ vectoriel' : Le champ magnétique statique

Faisceaux laser à impulsion

En un point z, on perçoit un champ électrique oscillant durant un temps très bref $\sim \tau$ C'est un 'cosinus' multiplié par une 'enveloppe' a) Time Domain Pulses `solitons': E(t)l'enveloppe est en **1/cosh(t**/τ) $T = 1/f_{rep}$ 1 femtoseconde[fs]=10⁻¹⁵s E=énergie par pulse (en Joule) Ex. : YAG, λ =1 μ m, E=3J/pulse, f_{rep}= 10 Hz, τ =30fs P_{moyenne}=E/T (en Watts) P_{moyenne}= 30W $P_{cr\hat{e}te} = E/\tau$ (en (Watts) $P_{cr \hat{e} te} = 10^{14}W=100T\acute{e}raWatts=0.1P\acute{e}taWatts !!!$

L'intensité crête = P_{crête} /('surface' du faisceau)

$\lambda\,$ Longueur d'onde de l'onde elm

Mais une faisceau de lumière est aussi un ensemble de particules de lumière: des photons d'énergie $E=h\nu=hc/\lambda$ (E~1ev pour $\lambda=1\mu m$) Le nombre de photons dans un pulse laser = $E_{crête}/h\nu$ Si les fentes de Young sont éclairées par une onde lumineuse de 'très très' faible intensité

→ Les 'photons' arrivent 1 par 1 dans les fentes

La figure d'interférence se forme progressivement → au début la figure semble aléatoire mais peu a peu l'interférence prend forme → Si l'on considère 1 photon, on ne peut pas prédire ou il va aller \rightarrow a chaque nouvelle expérience, la première figure 1 change (elle n'est pas 'reproductible') → Mais si l'on attend un temps 'infini', on peut prédire la forme de la figure (5)

Cela suggère que l'on ne puisse 'déterminer' qu'une loi de probabilité ! = la probabilité de mesurer la présence d'un photon à un endroit donné et à un instant donné...

On renonce ainsi à prédire la trajectoire d'un photon...

Processus d'interaction laser électrons

Basse Intensité laser <10⁹W/cm² →Optique, spectroscopie,...

Intensité laser 'moyenne' 10¹⁰-10¹⁶W/cm² →optique non linéaire →génération d'harmoniques (visible \rightarrow XUV)

Gaz

Forte intensité >10¹⁶W/cm²(ex. 10¹⁹W/cm²) → Création d'un plasma & accélération laser-plasma Cible gazeuse : Faisceau électron Cible solide : faisceau de protons

Processus d'interaction laser électrons 'diffusion Compton'

- A haute énergie on décrit la réaction en considérant l'interaction d'un photon du laser avec un électron du faisceau (diffusion Compton)
- A 'basse énergie' on peut considérer que l'électron oscille dans le champ électrique oscillant de l'onde électromagnétique et qu'il rayonne (diffusion Thomson)

Diffusion Compton

Exemple du faisceau laser YAG

 λ ≈ 1µm → énergie des photons du faisceau laser E_{laser} ≈ 1eV
 On peut décrire la diffusion Compton laser

électron via le processus élémentaire

Correlation cinématique entre l'angle et l'énergie du photon

Applications of Compton scattering e⁻beam+ laser \rightarrow e⁻ + X/ γ ray

Applications de l'interaction laserfaisceaux d'électrons à basse énergie

•Ce qui a été fait auprès des gds accélérateurs à rayonnement synchrotron avec les rayons X et que l'on voudrait refaire dans une petite salle (grâce à l'interaction Compton)→mais qui necessite beaucoup moins de brillance !

- muséologie
- radiothérapie

Applications en paléontologie

http://www.esrf.eu/news/general/amber/amber/

Morceau d'ambre datant de 100 millions d'années avant JC (charentes)

> La très grande qualité optique des faisceaux de l'ESFR → reconstruction non destructive en 3D des éléments piégés dans l'ambre il y a plus de 100M d'années !!!

(Tafforeau, ESRF)

Application à l'étude des oeuvres d'art

- 'K edge imaging'
- 1. Les pigments contiennent des éléments chimiques lourds
- Couche K' de ces éléments excités par rayons X→identification

Total Cross Section of X-ray attenuation

K-edge imaging sur les éléments lourd de pigments (Pb→blanc, Hg→ vermillion ...)

 Mais ~30keuros d'assurance pour 2 jours
 → machine compacte dans un musée Souhaitée...

> J. Dik et al., *Analytical Chemistry*, **2008**, *80*, 6436 Cours d'histoire de l'art sur cette étude ! <u>http://www.vangogh.ua.ac.be/</u>

Une application médicale à l'ESRF (ligne ID17): radiothérapie pour le traitement des gliomes

Pas de traitement pour le 'glioblastome' aujourd'hui (7 cas/10⁵ par an en France...) •Idée (cf thèses S. Corde, J.F. Adam, ESRF) fixer un élément lourd (platine) sur l'ADN cancéreuse

•Puis exciter l'atome par un rayonnement X (78 keV=couche K) pour détruire cette ADN...

Mesures effectuées à l'ISRF sur des rats (auquels on a inoculé le gliome) → Phase d'essais cliniques à l'ESRF (chats et chiens...)

A. Bravin, www.ca.infn.it/alghero2008

The ThomX project: monochromatic high flux X-ray source for Low-energy applications

Collaboration between:

- LAL (A. Variola, project leader),
- **SOLEIL** (Synch. Rad. machine, Saclay),
- CELIA (Laser lab., Bordeaux)
- NEEL (Instr. X, Grenoble)
 - + C2RMF/CNRS (scientific lab. of Le Louvre museum, led by P. Walter) at start (C.R. Physique 10 (2009)676)
 - + New archeological Lab. in paris (P. Walter)
- + ESFR&INSERM (Grenoble, Synch. Rad. Machine, medical ligne group, A. Bravin)
- + Thales for industrial applications
- □ ThomX funded by the 'grand emprunt national'
 ~10M€

Application à moyenne énergie : fluorescence nucléaire

- Projet américain (LLNL)
 - Machine à rayon gamma monochromatique pour identifier la présence d'Uranium aux frontières
 - La machine doit tenir dans un camion !
- Projet japonais
 - Mesurer la composition des éléments radioactifs dans les 'bidons' de déchets à enterrer

Nuclear resonance fluorescence is easily excited narrowband laser-Compton sources

Nuclear Resonance Fluorescence depends upon the number of protons and the number of neutrons in the nucleus and is an isotope-specific material signature

source bandwidths of order $\Delta E/E \sim 10^{-3}$

Besoin : Source de rayons gamma dequasi 'mono-énergie'

www.ca.infn.it/alghero2008

Applications : gestion des déchets nucléaires

Radioactive waste in JAEA

Applications of high-flux γ-ray beams to nuclear and radioactive waste management

R. Hajima ERL Development Group, Japan Atomic Energy Agency

PosiPol'08, Hiroshima, Jun.18, 2008.

cleanup of all the waste in JAEA costs \$20 billion and 80 years.

Gestion des déchets nucléaires

68,900 drums stored in JAEA (Agence Nucléaire du Japon)

Le stockage des déchets est une procédure très onéreuse : on enterre les bidon suivant leur dangerosité **MAIS** les mesures de radioactivité ne sont pas assez précises

- Besoin d'identifier les isotopes radioactifs dans les bidons (U238, …)
- Fluorescence nucléaire résonnante avec 1-4 MeV rayons gamma
- → Faisable avec une machine Compton
 - → 320 MeV electrons
 - → ~600kW puissance moyenne, 2ps@130MHz, 1µm longueur d'onde laser

Hajima et al., J.Nucl.Sci.Tech45(2008)441

Nondestructive Assay by Nuclear Resonant Fluorescence

- Irradiation of γ-rays tuned at a NRF energy of nuclide to detect
- Detection of scattered γ-rays by energy-resolved detectors
- NRF is a unique fingerprint of nuclides → radioactive and stable nuclides can be detected
- Using 1-4 MeV γ-rays → applicable to thick objects

Un accélérateur d'électrons de 350 MeV est nécessaire pour cette application Caractéristiques du laser :

→~600kW average power, 2ps@130MHz, 1µm laser wavelength

Nondestructive Detection of Isotopes

PosiPol'08, Hiroshima, Jun.18, 2008.

Projet européen Extrem Light Infrastructure–Nuclear Pilar (ELI-NP-GS) → Produire des rayons γ de ~1 MeV à 20MeV pour faire de la physique nucléaire

> besoins technologiques au-delà des possibilités technologiques actuelles

In **Romania**, Magurele, the ELI pillar will focus on laser-based nuclear physics. For this purpose, **an intense gamma-ray source is forseen by coupling a high-energy particle accelerator to a high-power laser**.

Ene

Energy Root

Low Energy point

Interaction Lasertab

NRF Interaction

RF Power Supply Room

Roof & Crane support steel columns

Photo-drive

LAL contribution to ELI-NP

Design, alignment, synchronization, commissioning of a 32-pass 3D recirculator
→ High precision 'aberration free' optical setup

<100fs synchronization
 Tolerances & cleanliness & damage issues similar to Laser Mega Joule
 → Close collaboration with
 ALSYOM CO. in charge of manufacturing , optical pre-alignments, installations
 Amplitude Co. for the lasers

Le CNRS a signé la réponse à l appel d'offre qui sera remis cette semaine en Roumanie

ELI-NP solution: a laser beam 3D recirculator

Applications le la diffusion Compton à haute énergie

- 'Laser wire'
- Polarimetre Compton
- Source de positrons polarisés
- Collisionneur photon-photon

Résumé

- La diffusion Compton permet de produire des faisceaux de rayons X et rayons gamma
 - Des spectres quasi-monochromatiques
- Technologie mature
 - Plusieurs machines en construction
 - Nécessite de la R&D sur les systèmes optiques pour atteindre les performances requises pour les applications
- Déjà utilisé pour des diagnostiques faisceaux

Higher flux than rotating anodes But worse brilliance that Synch. Rad. Machines...

Photon Energy
Mesure du profil transverse des faisceau d'électrons

Expérience de faisabilité : CW Laser wire beam size monitor in ATF/KEK

CW 300mW 532nm Solid-state Laser fed into optical cavities

J. Urakawa

14.7μm laser wire for X scan
5.7μm for Y scan
(whole scan: 15min for X,
6min for Y)

Ongoing project Oxford/ATF: high power pulsed fiber laser

Pour mesurer la 'polarisation' des électrons on change la polarisation du laser et on mesure la 'distribution d'énergie' de photons Compton

Source de positrons polarisés pour l'ILC

Moortgat-Pick et al. Phys.Rep.460(2008)131 Araki et al. arXiv:physics/0509016

Une technique possible pour créer des positrons polarisés :

. . .

Expérience de faisabilité ATF/KEK

• Omori et al. PRL 96(2006)114801

Grosse R&D nécessaire pour les e+ de l'ILC

➔ 10 faisceaux laser de plus de 10MW puissance moyenne chacun

R&D sur les cavités Fabry-Perot

October 2007: Install the 2-mirror cavity into ATF-DR

•Exp. faisabilité ATF/KEK •2-mirror cavity •~1ps laser pulses@357MHz •Finesse <1000 Shimizu et al.

Snimizu et al. J.Phys.Soc.Jpn.78(2009)074501

R&D actuel (CELIA/Hiroshima/KEK/LAL): •3D 4-mirror cavity, BUT : 1MW, 1ps, 178MHz

 Increase laser power: low power picosecond Yb doped oscillator (<1W) and fibre amplification → 200W average power@178MHz

gamma-gamma Collider, 'PLC'

Telnov, NIMA355(1995)3

On 'joue' avec les orientations des spins de rayons gamma (e⁻ & laser polarisation) •Mesure la plus précise du couplage Higgs/photon (i.e. 'masse/radiation')

Faisceau d'électrons de 250 GeV avec ~3000 pulses par trains @ 5Hz & 5J/pulse ! **Peu d'études techniques :**

•LLNL Mercury laser + regenerative cavity