

Microelectronics at IN2P3 & IRFU

IN2P3 Micro-Electronics Coordinator

Microelectronics at IN2P3

- Large force of microelectronics engineers (~50)
 - Experience in designing and building large detectors
 - Common Cadence tools
 - But scattered in ~15 labs
- National organization :
 - Building blocks : « club »0.35µm SiGe
 - Networking 0.35 and 130 nm
 - Creation of poles with critical mass (~10 persons)
 - Orsay (OMEGA)
 - Clermont-Lyon (MICHRAU)
 - Strasbourg (IPHC)

mega

Motivation for poles

- Continuous increase of chip complexity (SoC, 3D...)
 - Minimize interface problems
- Importance of critical mass
 - Daily contacts and discussions between designers
 - Sharing of well proven blocks
 - Cross fertilization of different projects
- Large R&D activity
 - ILC detectors
 - sLHC starting (3D electronics)
 - astrophysics

Recent chips at OMEGA Orsay

- Several chips developped for ATLAS LAr, OPERA, LHCb, CALICE in BiCMOS 0.8µm and installed on experiments
- Turn to Silicon Germanium 0.35 µm BiCMOS technology in 2005
- Readout for MaPMT and ILC calorimeters
- Very high level of integration : System on Chip (SoC)
- Start of 3D integrated 130nm electronics for sLHC pixels
- Adaptation of MAROC for EUSO spatial application

12 oct 09

C. de La Taille - Microelectronics at IN2P3 and IRFU Lalonde 2009

mega

MAROC : MultiAnode Read-Out Chip

- Complete front-end chip for 64 channels multi-anode photomultipliers
 - 6bit-individual gain correction
 - Auto-trigger on 1/3 p.e. at 10 MHz
 - 12 bit charge output
 - SiGe 0.35 μ m, 12 mm², Pd = 5 mW/ch
- Bonded on a compact PCB (PMF) for ATLAS luminometer (ALFA)
- Also equips Double-Chooz, medical imaging... Project for JEM-EUSO

12 oct 09

C. de La Taille - Microelectronics at IN2P3 and IRFU Lalonde 2009

HaRDROC : ILC DHCAL readout

Hadronic Rpc Detector Read Out Chip 64 inputs, preamp + shaper + 3 discris Full power pulsing = > 7 μ W/ch Fully integrated ILC sequential readout Chip embedded in detector HaRDROC AMS SiGe 0.35 µm it's gonna heat ! =>Power pulse in beam in 2008-2009 5000 chips to be produced in 2010 -----14:09:52 5 us DAC 20.0mV 1.3040 \ 5 µs 2.00 V A DESCRIPTION OF THE OWNER. 4.05 V 100 A REAL PROPERTY AND INCOMENTS OF TAX Trigger 80 **Frigger Efficiency** at fat I gat I gat the top of a gat a fat a fat 60 I gar I gar to at 1 gat 1 gat 1 gat 1 25 µs d dafi t jati telati 20 1m² RPC [IPNL] 10 000 channels 25 50 175 200 75 100 125 150 Threshold in fC

mega

SPIROC : ILC AHCAL & ECAL readout

- SPIROC : Silicon Photomul. Integrated
 Readout Chip
 - 36 channels
 - Internal 12 bit ADC/TDC
 - Charge measurement (0-300 pC)
 - Time measurement (< 1 ns)
 - Autotrigger on MIP or spe (150 fC)
 - Sparsified readout compatible with EUDET 2nd generation DAQ
 - Pulsed power -> 25 µW/ch
 - Also External users (PET, hodoscopes, µ-imaging... (@ Aachen, Napoli, Pisa, Roma...)

mega

PARISROC for PMm²

- Photomultiplier ARray Integrated SiGe Read-Out Chip
 - Replace large PMTs by arrays of smaller ones (PMm2 project)
 - Centralized ASIC 16 independent channels
 - Auto-trigger
 - Charge and time measurement (10-12 bits)
 - Water tight, common high voltage
 - Data driven : « One wire out »
- Application in large Water Cerenkov
 - Chip studied by MENPHYNO, DUSEL, LENA...

Joël Pouthas IPN Orsay

12 oct 09

C. de La Taille - Microelectronics at IN2P3 and IRFU Lalonde 2009

R&D dedicated to ILC/Calice

Very-front-end electronics of SI-W calorimeter:

- Dynamic range of 15 bits
- \blacktriangleright Global precision > 8 bits
- Embedded multi-channels chips
- > $> 100.10^6$ channels
- \blacktriangleright Ultra-low power : 25 μ W per channel

The embedded VFE chip inside the sandwich structure of the Ecal detector

INNOTEP (AMS 0.35µm SiGe)

time **Digital Signal** Photo -Charge Differential ADC amplifier Shaper Processing detector amplitude 100 Mhz 8 bits ADC (S. Crampon thesis) First version tested, need for an iteration Detector ring Fast preamplifier and 40ns shaper (tested) Used for a 40 channels demonstrator.

See talk by S. Crampon

TARANIS Project through CESR in Toulouse via MIND/C4I

<u>Experiment goal</u>: Measurement of the energetic electrons generated by atmospheric thunderstorms, space electronics (µsatellite)

Front-end analog blocks (CSA, Shapers, comparators) come from several projects (INNOTEP, ILC T2K)

2 types of detectors : CdZnTe and Si diode

- o TOF : 1ns resolution
- o TOF PET : very high timing resolution << 200ps
- o Very High speed ADC >> 500Ms/s... 1 GMs/s ?
- o Beam profiler : high counting rate (100Me/s)
- o Very fast preamplifier and shapers

Technology transfer

Microelectronic part of the EREBUS project

"Intelligent sensor to limit the nitration of industrial process and the rejection of VOC (Volatile Organic components)"

o Preamplifier, shaper, ADC and treatment.

o Technology transfer

EUREKA Project

PhD student "bourse CIFFRE"

LT Mux for XRAY micro calorimeters Matrix

saclay

- **Target: IXO** satellite (ESA)
- High resolution (5eV @ 6kEV) XRay spectro-imager
- fine pitch: 4000 pixels
- Calorimeter Matrix manufactured by CEA/LETI
- Detector temperature : 50 to 100mK
- Photon by photon detection => high speed FE
- Front_End electronics close to the detector:
- Must operate @ 4K
- Amplify and multiplex the detector pulses
- Low noise, low power (30µW/channel)

8x8 calorimeter matrix prototype

- Technological choices:
 - HEMT (from CNRS/LPN) for the first stage (impedance adaptation + gain).
 - AMS 0.35µm SiGe chip for extra gain + 32=>1 mulitplexing:
 - Behavior of SiGe @ 4K evaluated on previous chips.
 - 2 prototype circuits submitted in July 2009.

lrfu

saclay

Idef-X 2.E for ECLAIRs.

- For SVOM/ECLAIR: Gamma Ray Burst satellite.
- CdTe Detectors.
- 32 channels. 2.2 mW/ ch.
- Slow control => many parameters tunable
- Self triggered / 1 Thresh/channel.
- 1µs-10µs selectable shaping.
- Peak detector. Mux Output.
- Sparsification and zero-supress.
- ~200mV/fC. 50ke- linear range (220 keV CdTe)
- 60 e- rms noise with detectors.
- Rad-tolerant > 200krad. Use of Latch-up hardened
- Space qualification in progress.

AMS0.35µm CMOS EPI. 18mm². 2000 chips manufactured

I r f u The SAM (swift analog memory) chip for the HESS2 experiment:

- Readout for the fast PMTs of the HESS2 camera
- saclay High RO speed Gsample/s analogue memory (time expander chip)

2

256

0.7-3.2GS/s

>16 MHz

450 MHz

300 mW

No

12.6 bits rms

- Number of ch
- Number of cells/ch
- Sampling Freq
- Readout Speed
- BW
- PW
- Dynamic range
- Simultaneous R/W
- Smart Read pointer Yes
- 6000 chips manufactured: 95% Yield
- New chip under design => Cerenkov Telescope Array

AMS CMOS 0.35µm. 50k transistors, 11mm²

•Data driven readout

submitted sept. 7th 2009.

lrfu

The AFTER chip for the TPC of T2K

saclay

Design to read the 120.000 Micromegas pads of the TPC of T2K. Combine a low noise Front-end & and a large depth and S/N SCA. Installation @ Tokai in progress. Start at the end 2009.

AMS CMOS 0.35µm 7.8 x 7.4 mm² 500.000 transistors 6000 chips manufactured 85% Yield

Main Design features

- 72 channels x 511 analog memory cells;
- F_{write}: 1-100MHz; F_{read}: 20MHz
- 4 Charge Ranges (120fC to 600fC)- 1% INL
- Supports positive or negative input signals
- 16 Peaking Time Values (100ns to 2µs)
- Constant dead time (2ms to read all the SCA)
- S/N >11 bit rms.

AGET: A future improved AFTER

- Based on AFTER
 - 1 discri/channel, 1 threshold/channel
- Multiplicity output. Autotriggerable.
- On chip zero-supress
- New 50ns shaping & "high energy" ranges
- New modes of readout
 - Prototype submission: end of 2009

Monolithic Active Pixel Sensors (MAPS): A Long Term R&D

Main objective: ILC, with staggered performances

Solution № MAPS applied to other experiments with intermediate requirements

 $6 \times 2 \ cm^2$

No constraints

EUDET 2007/2009

Beam Telescope

ILC >2012 Internatinal Linear Collider

- FP6 EUDET Project (DESY-Hamburg, Germany)
 - Surface
 - Read-out speed
 - **Temp**. & Power:
- STAR Experiment (RHIC Brookhaven, USA)
 - Surface €

 - 🗞 Temp. & Power
- ~1600 cm² A. 50 MHz \rightarrow D. up to 250 MHz
- 30°C, ~100mW/cm²

STAR 2010

CBM Experiment (GSI – Darmstadt, Germany)

- Surface
- Read-out speed
- Rad Tol
- ILC Experiment

 - ✤ Read-out speed

 - Rad Tol

- ~500 cm^2 D. 15 x 10⁹ pixels/sensor/s $1 MRad, > 10^{13} N_{eq}/cm^2$
- $\sim 3000 \text{ cm}^2$ D. 15 x 10⁹ pixels/sensor/s 30°C, ~100 mW/cm² ~300 kRad, ~10¹² N_{eg} /cm²

Spinoff: Interdisciplinary Applications, biomedical, ... →

Partnerships: GIS IN2P3/Photonis & GIS IN2P3/SAGEM & Ohio University & Michigan University...
 C. de La Taille - Microelectronics at IN2P3 and IRFU

12 oct 09

Lalonde 2009

Development of MAPS for Charged Particle Tracking

In 1999, the IPHC CMOS sensor group proposed the first CMOS pixel sensor (MAPS) for future vertex detectors (ILC)

- S Numerous other applications of MAPS have emerged since then
- Solution Sector Sec

Original aspect: integration sensitive volume (EPI layer) and front-end readout electronics on the same substrate

- Charge created in EPI, excess carries propagate thermally, collected by N_{WELL}/P_{EPI}, with help of reflection on boundaries with P-well and substrate (high doping)
 - Q = 80 e⁻h / μm → signal < 1000 e⁻
- Sompact, flexible
- 🤟 EPI layer ~10–15 μm thick
 - thinning to ~30–40 μm permitted
- Standard CMOS fabrication technology
 - Cheap, fast multi-project run turn-around
- Room temperature operation

→ Attractive balance between granularity, material budget, radiation tolerance, read out speed and power dissipation

BUT

- \lor Very thin sensitive volume \rightarrow impacts signal magnitude (mV!)
- Sensitive volume almost un-depleted → impacts radiation tolerance & speed
- Sommercial fabrication (parameters) → impacts sensing performances & radiation tolerance
- \backsim N_{WELL} used for charge collection \rightarrow restricts use of PMOS transistors

C. de La Taille - Microelectronics at IN2P3 and IRFU Lalonde 2009

ENC ~10-15 e⁻, S/N > 20-30 (MPV) at room temperature Single point resolution ~ μm, a function of pixel pitch

MAPS provide excellent tracking performances

- ~ 1 μm (10 μm pitch), ~ 3 μm (40 μm pitch) \rightarrow analogue output!

P

Detection efficiency ~100%

- Ionising radiation tolerance: O(1 M Rad)
- Non ionising radiation tolerance: $2x10^{12} N_{ea}/cm^2$ (20 μ m pitch) $\rightarrow 10^{13} N_{ea}/cm^2$ (10 μ m pitch)
- System integration
 - Thinning (via STAR collaboration at LBNL) ~50 μm, expected to ~30-40 μm
 - Development of ladder equipped with MIMOSA chips (< $0.3\% X_{o}$, coll. with LBNL)
 - Edgeless dicing / stitching \rightarrow alleviate material budget of flex cable

MAPS: Final chips:

- MIMOTEL (2006): ~66 mm², 65k pixels, 30 μm pitch
 EUDET Beam Telescope (BT) demonstrator
- MIMOSA18 (2006): ~37 mm², 262k pixels, 10 μm pitch
 High resolution EUDET BT demonstrator
- MIMOSTAR (2006): ~2 cm², 204k pixels, 30 μm pitch Test sensor for STAR Vx detector upgrade
- LUSIPHER (2007): ~40 mm², 320k pixels, 10 μm pitch Electron-Bombarded CMOS for photon and radiation imaging detectors
- BUT: moderate readout speed for larger sensors with smaller pixel pitch! C. de La Taille - Microelectronics at IN2P3 and IRFU Lalonde 2009

M18

STREET, STORE STORE STREET, STORE ST

MIMOSTAR

Chip dimension: ~2 cm²

MIMOTEL

LUSIPHER

MAPS performance Improvement

R&D on high readout speed, low noise, low power dissipation, highly integrated signal processing architecture with radiation tolerance

Architecture of pixel array organised in // columns read out:

- Pre-amp and CDS in each pixel
- A/D: 1 discriminator / column (offset compensation)
- Power vs Speed
 - > Power → Readout in a rolling shutter mode
 - Speed → All pixels belonging to the same row are read out simultaneously
- MIMOSA8 (2004), MIMOSA16 (2006), MIMOSA22 (2007/08)

2 Zero suppression logic:

- Reduce the raw data flow of MAPS
- Data compression factor ranging from 10 to 1000, depending on the hit density per frame
- SUZE-01 (2007), see poster A. HIMMI

5 Voltage regulator & DC-DC converter

12 oct 09

- Prototype (2008-2009)
- See poster I. VALIN

C. de La Taille - Microelectronics at IN2P3 and IRFU Lalonde 2009

24

MIMOSA22 & SUZE-01 Test Results

MIMOSA22: (15 μm EPI) 136 x 576 pixels + 128 column-level discriminators

- Laboratory test: P
 - Temporal Noise: 0.64 mV → 12 e⁻
 - FPN:

Beam test at CERN SPS (120 GeV pions)

■ SUZE-01:

Temporal noise

1000

800

600

400

200

besign performances tested at the nominal frequency with safety margin of 20%, at room Temp

- No pattern encoding error, can handle > 100 hits/frame at rate ~200 ns per pixel row
- Still to do : improve radiation tolerance (SEU, SEL) of digital circuits (including memories)

C. de La Taille - Microelectronics at IN2P3 and IRFU Lalonde 2009

MIMOSA26: 1st MAPS with Integrated \emptyset

Summary MAPS

The First reticule size MAPS with binary output and integrated zero suppression logic has been designed and fabricated

- Small pitch pixel (18.4 μ m), Large sensitive area (> 2 cm²)
- ℅ High binary read-out speed : ~10 K frames/s
- → 2D MAPS have reached necessary prototyping maturity for real scale applications:
- STAR vertex detector upgrade: MIMOSA26x1.7 (may also equip EUDET BT, ~50 μm)
- Section 2018 Architecture will be extended to MVD-CBM (SIS-100) and is proposed for Vx det.-ILC

The emergence of fabrication processes with depleted epitaxy / substrate opens the door to :

- Substantial improvements in read-out speed and non-ionising radiation tolerance
 - Non-ionising radiation tolerance up to 10¹⁴ N_{ed}/cm² is expected
- Super LHC → "Large pitch" applications → trackers (e.g. Super LHC)

Translation to 3D integration technology :

- Sesorb most limitations specific to 2D MAPS
 - *T type & density, peripheral insensitive zone, combination of different CMOS processes*
- Solution See the set of the set
- Solution № Many difficulties to overcome (ex. heat, power)
- \triangleleft R&D in progress \rightarrow 2009/10 important step for validation of this promising technology

µE for Biomedical Application

See talk by N. Olivier-Henry

IPHC Imabio Project: small animal PET imaging

- ✤ 4 modules arranged around the animal
- Solution № Matrix of 32 ×24 crystals / module
 - 1.5mm×1.5mm×25mm LYSO(Ce)
- Sead at both ends by MCP photo-detectors
 - MCP (Multi Channel Plate)
- Solution № 3072 crystals and 6144 electronic channels
- ✤ 100 ASICs of 64 channels

inaging

IMOTEPAD64: 64 channels readout circuit

- \bigcirc Chip dimensions: 3.68 x 8.26 mm², 100 μ m pitch
- Input dynamic range: 11 bits, ∼ fC 104 pC
 - Adjustable gain : 6 bits
 - Shaping time: 300 ns,
 - Analogue sampling, < 3 % nonlinearity
- Solution: 625 ps → ~ 200 ps (next generation)
 - Measured Jitter < 20 ps rms
- Seadout frequency: 100 kHz
 - CK: 50 MHz

C. de La Taille - Microelectronics at IN2P3 and IRFU Lalonde 2009

μE for Bio-logging

- IPHC → Multidisciplinary laboratory → 3 departments (DEPE, DSA, DRS)
- One of R&D activities: Bio-logging:

ASIC for Bio-logging

- \Leftrightarrow Sensors + electronics \rightarrow final goal
 - ★ Master sensors
 - Temperature (2), Pressure/Temperature, Light, Logical (water presence/counter)
 - ★ Secondary sensors
 - Zeegbee, GPS, Acc 3D
 - ★ Other sensors
 - ECG/ Analogue input, Digital compass

Low power design:

- ✤ Analogue & mixed design:
 - Ultra low power ADC design
- Digital (Asynchronous ?) Design: from
 - Controller for sensor scanning and data storage

to

- Ultra low power Micro-controller:
 - ★ for data compression and treatment
 - ★ for complex trigger

Access technology & IP

3D technology

- Increasing integration density
 - Large industrial market (imagers, processors, memories...)
 - Uses ~1 µm Through Silicon Vias
 - Requires wafer thinning to $\sim 10 \ \mu m$
 - A new major revolution coming up !
- Promoted into HEP by Ray. Yarema (FNAL)
 - IN2P3 joined FNAL 3D consortium
 - CPPM, IPHC, IRFU, LAL/OMEGA,LPNHE

ad to senso

neaa

12 oct 09

C. de La Taille - Microelectronics at IN2P3 and IRFU Lalonde 2009

IN2P3 participation in 3D FNAL run

- CPPM/Bonn ATLAS 2D pixel design based on earlier design in IBM 0.13 um (FEI4_prototype)
- CPPM SEU resistant register and TSV/bond interface daisy chain to measure TSV and bond yield.
- CPPM/Bonn ATLAS 3D pixel design foreseen for ATLAS upgrade
- OMEGA 24x64 pixel array for SLHC
- IPHC_INFN CAIRN_1: Multi purpose pixel sensor: ILC, bio-medical applications ...
- IPHC_IRFU CAIRN_2: Prototype sensor for ILC with rolling shutter readout mode
- IPHC CAIRN_3: Prototype sensor for ILC, 12 µm pitch, 5 bits time stamp
- IRFU-IPHC CAIRN_4: prototype sensor fc₆.
 ILC with rolling shutter readout mode
- CMP Memory: CMP Anti-latch up SRAM

C. de La Taille - Microelectronics at IN

12 oct 09

Chips shown at TWEPP

- Fast ADCs & DACs for ILC: LPSC Grenoble (L. Gallin-Martell)
- 12 bits 35 MHz ADC : LPSC Grenoble (F. Rarbi)
 - Talk « building blocks » by F. Rarbi
- MicroMegas DHCAL readout : LAPP Annecy (R. Gaglione)
- DLLs for SNemo : LPC Caen (V. Tocut)
 - Talk « building bocks » by L. Leterrier
- Discri for FEI4 : CPPM Marseille (M. Mehouni)
- Analog memory for km3 : CPPM Marseille (L. Caponetto)
- ASPIC LSST readout : LAL+LPNHE (F. Wicek)
 - Talk « building blocks » by R. Sefri

- Initialement pour l'expérience CLAS12 en développement : étude d'un TDC pour mesure de temps de vol pour scintillateur résolution inférieure à 100ps sur 0.35µm SiGe d'AMS
- Ce projet a rejoint les études pour PMm² Conception de la partie TDC de l'ASIC Omega PARISROC2, optimisation de la double rampe pour atteindre une résolution de 150ps sans temps mort local. Run en novembre 2009

at 11121 J and 111 U

Laivinuu

Perspectives

- Adaptation des travaux réalisés pour PARISROC2 à l'électronique du projet CLAS12 (lecture par galettes de microcanaux)
- Préamplificateurs de charge pour l'expérience GASPARD (détecteurs Silicium) :
 - ~ 15000 voies
 - Quantité de matière minimale
 - Faible consommation
 - Faible bruit 150-200e⁻
 - Dynamique 14 bits

at inter o and inter

Chips at Subatech [C. Renard]

- Low noise amplifier for CODALEMA in 0.35µm CMOS
 - Continuation of BiCMOS 0.8 µm charge preamp for CODALEMA radio detection of atmospheric showers
- Variant (simplified) of IDEFIX for 2012 ?

Chips at LPNHE [H. Lebbolo]

- ASPIC : Dual slope integrator CCD readout for LSST
 - Talk « building blocks » by R. Sefri
- CLASSIC : Clamp and sample variant for CCD readout for LSST
- ILC microstrip readout (SiLC collaboration + EUDET) IMC 130 nm
 - Talk « building blocks » by T. Hung Pham
- Low noise current preamp for photodiode telescope calibration
- Possible participation in SuperB for TDC

Conclusion

- Strong, experienced teams, gathered in poles to realize complex chips
- Designs in SiGe 0.35 µm, IBM & Chartered 130nm
- 3D developments with FNAL
- Thanks to Christine Hu (IPHC), Jean-Claude Clémens (CPPM), Eric Delagnes (IRFU), Jacques Lecoq (LPCCIt), Hervé Mathez (IPNL) who provided slides for TWEPP
- Thanks to V. Chambert (IPNO), C. Renard (Subatech), H. Lebbolo who provided information for this talk

nega

12 oct 09

See talks by

G. Dozère, I. Valin

- In-pixel gain and radiation tolerance improvements:
 - Simple 3T pixel with off line CDS
 in-pixel amplification + CDS without S/N degradation
 - Ionising radiation: pixel special layout, increase readout speed
 - Up to 1Mrad @ -20°C, t_{r.o.} = 180 µs, no change to detection eff. → crucial @ room temperature
 - Non ionising radiation → High resistivity sensitive volume → faster charge collection
 - Exploration of a technology with depleted epitaxial layer: MIMOSA-25 (2008) > 3x10¹³ N_{eq}/cm²
 - Exploration of a new VDSM technology with depleted substrate: MIMO_LePix (2009/2010):
 - Project driven by CERN for SLHC trackers also attractive for CBM, ILC and CLIC Vertex Detectors
- Readout speed improvements:
 - Sensor organised for // columns read out + column-level discrimination:
 - IPHC-IRFU Collaboration: MIMOSA8 (2004), MIMOSA16 (2006), MIMOSA22 (2007/08)
 - Zero suppression circuit for data flow reduction:
 - SUZE (2007); compression factor: 10-1000, function of the hit

