Ecole microélectronique IN2P3 - La Londe les Maures – Octobre 2009

Caractérisation d'ASIC conçus à l'IPHC ... L'évolution des besoins de 1998 à 2009 ... Des détecteurs Micro-pistes aux MAPS ...

Caractérisation de HAL25 HAL25 (ALICE) sur PCB

Test fonctionnel MAPS sur Wafer

Caractérisation – Photons X MAPS sur PCB

Gilles CLAUS

Test en faisceau MAPS dans le Télescope

15/10/2009

Caractérisation d'ASIC - La Londe les Maures - Octobre 2009

gilles.claus@ires.in2p3.fr

1/36

L'évolution ... des ASIC ... et des Tests ...

► ASIC de lecture de détecteurs à µ pistes → Mise en forme du signal

L'évolution ... des ASIC ... et des Tests ...

► ASIC de lecture de détecteurs à µ pistes → Mise en forme du signal

15/10/2009

HAL25 : Asic de lecture de détecteurs à µ pistes

HAL 25 → 128 Canaux : Préampli – Shaper - Mémorisation

Lecture : Flux données analogiques série à 10 MHz

Caractérisation → Quels paramètres ?

- ► Caractérisation électrique ^(C) (Q → I ou V)
 - ► Car l'ASIC peut être dissocié du détecteur
- Chaîne analogique « classique »
 - ► Piédestal [mV]
 - ► Gain [mV/MIP]
 - ► Linéarité [%]
 - ► Shaping time [µs]
 - ▶ Bruit [e-]
 - ► Diaphonie ... [%]
- ▶ Dispersion des paramètres → Car 128 chaînes !

HAL 25 : Définition du banc de test

Contexte de test

- ► Tests réalisés au laboratoire (pas de tests en faisceau)
 - → Banc de test flexible MAIS « sédentaire »
- ► Testabilité intégrée dans l'ASIC
 - ▶ Générateur de test qui émule le signal du détecteur
 - ▶ Injection externe pour calibrer le générateur
 - **Slow control (JTAG) pour configurer l'ASIC**
 - → Permet de tester TOUS les canaux (128)
 → Facilite l'automatisation des tests

Banc de Test Mixte

- ► Contrôle digital de l'ASIC → « Steering »
 - → Testeur de CI numériques HP82000 – 32 voies I/O – 100 MHz
- ► Calibration du générateur de test interne → Calibration
 - → Générateur d'impulsion externe
- ► Acquisition des données analogiques → « Readout »
 - → Acquisition VME ADC 12 bits @ 20 MHz

Carte de Test

15/10//2009

PCB Hal 25 sur support ZIF

Caractérisation d'ASIC - La Londe les Maures - Octobre 2009

HAL 25 : Pourquoi utiliser un testeur du CI numériques ?

Un générateur de pattern suffit ... ou un FPGA pour piloter HAL 25 ... Non ?

- > Avantages HP82000 / Générateur de pattern
 - ► Acquisition de signaux → Test de fonctions digitales
 - **•** Translateur horloge LVDS / CMOS de HAL 25
 - ► JTAG
 - ▶ Balayage des signaux → Recherche de faiblesses
 - ► Niveaux
 - ▶ Fréquence / Setup time / hold time

Recherche de faiblesses – Tests aux limites → Translateur LVDS / CMOS

- ▶ Recherche des limites de fonctionnement de
 - ► La tension d'alimentation
 - **Du mode commun sur l'entrée LVDS**
- Exécution 1000 fois d'un test fonctionnel
 - ▶ En balayant le mode commun → Axe X
 - ► En balayant la tension d'alimentation → Axe Y
- ▶ Résultat affiché → « shmoo plot »
 - \blacktriangleright Zone verte \rightarrow Le test passe
 - ► Zone rouge → Le test échoue

Conclusion

Caractérisation d'ASIC de lecture de détecteurs à µ pistes

Caractérisation de l'ASIC indépendante du détecteur

- ▶ Caractérisation électrique → Simple conversion Q / V
- ► Il est possible d'intégrer de la testabilité dans l'ASIC → Simplifie les bancs de test Automatisation des tests – Détection d'ASIC défectueux dans l'expérience

▶ Pas de nécessité de déployer / dupliquer les bancs de test hors du laboratoire

- ► Utilisation d'équipements de test flexibles (mais sédentaires) → Testeur de CI numériques
- Possiblité d'effectuer un test détaillé (exhaustif ?) de l'ASIC
 - ► Recherche des limites de fonctionnement → « shmoo plot »
 - **Test intensif** de la logique du circuit \rightarrow Vecteurs de test

► Tests avec détecteur → Tests en faisceau ?

- **•** Toujours nécessaires ! Mais peuvent être découplés des tests au labo
- Peuvent être réalisés par une autre équipe avec des ASIC validés

Caractérisation d'ASIC - La Londe les Maures - Octobre 2009

L'évolution ... des ASIC ... et des Tests ...

► ASIC de lecture de détecteurs à µ pistes → Mise en forme du signal

MAPS Analogique : Monolithic Active Pixels Sensors

- **Q** Futurs Détecteurs de vertex : STAR ILC CBM
- Imagerie biomédicale

Le capteur : C'est une matrice de pixels

- Un pixel actif \rightarrow Source follower dans le pixel
- Une matrice → système de lecture séquentielle

Exemple : Mimosa 5 10⁶ pixels / 4 cm²

Caractérisation → **Quels** paramètres ?

- ► Caractérisation électrique impossible
 - Car l'ASIC est indissociable du détecteur ...

Paramètres du capteur

- ▶ Rendement de production → [%] de pixels morts → ~ n/1000
- ► Gain [µV/e-] → ~20 µV/e-
- ▶ Bruit [e-] → ~12 e-
- ► Collection charge dans le pixel central [%] → ~ 30 %
- ▶ Résolution spaciale (position particule) [µm] \rightarrow ~ 3 µm
- ► Efficacité de détection [%] → > 99,5 %
- **•** Dispersion des paramètres ?
 - → Réalisable ? Quelques 10³ à 10⁶ canaux ...

Caractérisation du CAPTEUR

- ► Test fonctionnel en lumière visible
- Calibrations avec photons X
- ► Tests en faisceau Valider / Référence

MAPS Analogique : Une caractérisation en 3 étapes

MAPS Analogique : Quel équipement de Pilotage & d'Acquisition ?

HP 82000 + DAQ VME ? (Coût ~ 200 K€)

Pas adapté ... car cet équipement

Doit être transportable

- ► Tests sous pointes des wafer
- ► Tests en faisceau
- ► Doit être duplicable
 - ▶ Pour le labo → ~ 4 proto MAPS / an
 - ▶ Pour les collaborateurs hors du labo
- **Doit avoir un coût raisonnable**

Pilotage & Acquisition d'un MAPS

- Reçoit Horloge (1-50 MHz) + Token
- **Fournit flux analogique série**
 - ► 4 à 8 voies / MAPS
 - ▶ 4 10³ à 256 10³ pixels / voie
 - Nécessite 12 bits dynamique

Développement d'un système compacte (Coût ~ 13 K€ VME - ~ 7,5 K€ USB)

Carte Pilotage & Acquisition MAPS Deux versions - Développées au labo Avant 2005 → Bus VME Après 2005 → Bus USB

- Séquenceur (fournit horloge + token)
- 4 X ADC 12 bits 256 10³ échantillons

DAQ VME

- DAQ : CPU RIO 2 Lynx OS
- Supervision & Monitoring : PC Linux

Conclusion

Caractérisation de MAPS à sortie analogique

Caractérisation de l'ASIC indissociable du détecteur

- **•** Tests fonctionnel MAPS sur wafer : Capteur excité par photons lumière visible
- ► Calibration : Capteur excité par photons X (Fe⁵⁵ 5,9 Kev)
- ► Validation / Référence (micro pistes SI) : Faisceaux de test CERN & DESY (3-4 semaines / an)
- ► Tenue aux rayonnements (Ionisant & Neutrons) → Refaire calibration & Tests en faisceau avec MAPS irradiés

Ressources nécessaires à la caractérisation des MAPS

- Développement & Déploiement d'équipements de test
 - **Cartes de test MAPS Carte d'acquisition (Suivi de production & Test)**
 - **Logiciel : Slow control, DAQ, Monitoring et Analyse**
 - Une dizaine de systèmes déployés chez nos collaborateurs (Développement & Test MAPS) (IRFU Saclay, IPNL Lyon, Univ Genève, Univ Francfort, DESY Hambourg, Univ Rome, Bristol, Berkeley, Oregon, Oahio ...)

► Caractérisation → Nécessite un Spectre élargi de compétences

- ► Physique du pixel → Physiciens Instrumentalistes
- ► Electronique du pixel → Concepteurs Microélectroniciens
- ► Steering & Readout MAPS → Ingénieurs Test

Une forte interaction entre Concepteur, Physiciens et Ingénieurs Test est nécessaire

→ Frontière des domaines floue
→ Recouvrement nécessaire !

Notes / Avis : Quels équipements de Test ?

Testeur Industriel de CI Mixtes → Agilent 93000 (DSP Analog Instrumentation)

Développement au laboratoire de systèmes de Test

Pour Quels ASICs ?

▶ Si l'ASIC est de type HAL25 → Caractérisation électrique

- ► Testeur de CI Mixtes semble bien adapté (<u>Mais vérifier SNR des ADC !</u>)
 - ▶ Pas de développement de cartes de test ou d'acquisition
 - ▶ Réduit le développement logiciel → Intégration de progiciels
 - ▶ Facilite la mise en oeuvre de tests aux limites (shmoo plot) → Outils prédéfinis & configurables
 - ▶ Transposition aisée des tests au labo vers des tests en production sur ATE similaire

▶ Inconvénients

- ▶ Le coût → Un seul équipement → Equipement mutualisé → Planning d'utilisation
- ▶ Disposer d'une expertise d'utilisation du testeur → Ingénieur dédié → Service Test ?
- La souplesse de mise en œuvre des test risque d'être contrée par la lourdeur d'accès au testeur

► Si l'ASIC est de type MAPS → Caractérisation du capteur

- ▶ Le Testeur de CI mixtes <u>SEUL</u> ne convient pas (Duplication & Mobilité des systèmes de test)
- ▶ Il peut néanmoins être utile → Cas de MAPS intégrant du traitement
- ▶ Il faut composer entre développements au labo et instrumentation modulaire

Instrumentation modulaire

- PXI de National Instrument
- Association de Générateurs / Analyseurs

Générateur de pattern Tektro

Générateur / Analyseur logique Agilent

Notes / Avis : Quel contrôleur pour le slow control ?

Solution Matérielle ou Logicielle→ Exemple pour le JTAG

- Utiliser un CI contrôleur JTAG
- ► Utiliser une carte JTAG
- ► L'implémenter soi même en logiciel
- → Exemple : eTBC (Embeded Test Bus Controler) 74LVT8980
- → Exemple : JTAG Technology Corelis
- → Exemple : Sortie sur simple port // de PC

Décision de l'implémenter en logiciel ...

- ► Pourquoi ?
 - **C'était notre premier ASIC intégrant le JTAG ...**
 - ► En cas de bug dans l'ASIC → On peut adapter le côté contrôleur
 - ► Prendre des libertés / protocole
 - ► Pour comprendre le bug ET / OU Pour le contourner
- Comment l'implémenter ?
 - ▶ Gérer le séquencement & sérialisation des signaux dans une librairie en C
 - Piloter un port d'I/O en bas niveau Fréquence atteinte ~ 100 kb/s
- ▶ Inconvénient → Lenteur (~100 kb/s) ... Slow Control ... Non ? Quoi que ...
- ► Les bénéfices ...
 - ▶ Sortie intermédiaire de vecteurs de test → Pour Tests avec HP 82000 @ 1 0 MHz
 - ▶ Portabilité : Développé en 1997 sous VME / OS9 Toujours utilisé en 2009 PC / Windows

Kimmo JAASKELAINEN Kimmo.jaaskelainend@ires.in2p3.fr

1997 – 2003 JTAG ALICE 128C – HAL 25

Gilles CLAUS Gilles.claus@ires.in2p3.fr

15/10//2009

Notes / Avis : Quels logiciels de Test ?

L'évolution ... des ASIC ... et des Tests ...

► ASIC de lecture de détecteurs à μ pistes \rightarrow Mise en forme du signal

17/36

MAPS à sortie numérisée → Discriminateur ...

MAPS architecture colonnes // (Proto à 24 puis 1152 colonnes)

- Une sortie / colonne
- Lecture ligne par ligne
- **Discriminateur** en bas de colonne

Caractérisation

- L'ASIC n'est plus un « simple » détecteur
 - Traitement embarqué
 - CDS dans le pixel
 - Discriminateur en bas de colonne
- Dissocier caractérisation : Pixel / Discriminateur
 - ► Caractériser le pixel seul → Analogique
 - ► Caractériser le discri seul → Signal DC en entrée
 - ► Caractériser l'ensemble Pixel + Discri

Testabilité intégrée

- **Emulation signal détecteur pour tester le discri**
- ▶ Nécessité d'un slow control (JTAG)
 - Sélection des modes de fonctionnement : Test / Normal
 - Ajustement des polarisations + seuils discri
 - Dévalidation des colonnes bruyantes / mortes
 - **Emulation données pour valider transmission**

MAPS à sortie numérisée : Le discriminateur

Paramètres caractéristiques ?

(But -> Définir le seuil de déclenchement)

- ► Le bruit → TN = Temporal noise
- ► La dispersion du seuil → FPN = Fixed pattern noise

Comment les obtenir ?

► Tracer les fonctions de transfert « courbes en S »

- **Balayer les seuils des discriminateurs (Axe X)**
- ► Compter les occurrences 0/1 et normaliser (Axe Y)
- ► Tracer les courbes : occurrences 0/1 = f (Seuil)
- ► « Fitter » les courbes → Extraire TN et FPN
- **Distribution du TN et FPN pour TOUS les discriminateurs**
- Développement de logiciels d'analyse
 - On-line (pour les réglages) & Off-line (calcul TN et FPN)

Conclusion Caractérisation de MAPS à sortie numérisée

Caractérisation « classique » du Pixel analogique

- ► Calibration : photons X Fe⁵⁵ à 5,9 Kev
- Validation / Référence (micro pistes SI) : Faisceaux de test CERN & DESY

+ Caractérisation deS discriminateurS

- ► Seul = Emulation du signal du pixel Pour Mimosa 26 → 1152 fonctions de transfert
- ► Connecté au pixel Pour Mimosa 26 → 663552 fonctions de transfert (une par pixel)
- ► Caractérisation du discriminateur → Caractérisation électrique

> Test en faisceau de l'ensemble : Pixel + Discriminateur

▶ Balayage du seuil des discriminateurs → Efficacité de détection = f (Seuil)

Ajout de traitements dans le MAPS ...

→ La part de la caractérisation électrique augmente / celle du capteur

L'évolution ... des ASIC ... et des Tests ...

► ASIC de lecture de détecteurs à μ pistes \rightarrow Mise en forme du signal

MAPS à suppression de 0 : Mimosa 26 ...

Mimosa 26?

- Capteur final pour le télescope de faisceau du JRA1 du projet Européen (FP6) EUDET (R & D détecteurs ILC)
- ► Intégration : MAPS numérique & suppression de 0
 - ▶ Mimosa 22 → MAPS numérique 576 lignes x 128 colonnes (2008)
 - ► SUZE → Circuit de suppression de zéros (2008)
- Quelques chiffres clefs
 - ▶ Nombre de pixels : 663 552 pixels
 - ▶ 1152 colonnes x 576 lignes
 - ▶ Surface active : ~ 2 cm² (10,6 mm x 21,2 mm)
 - Pitch des pixels 18,4 μm
 - ► Temps de lecture 115,2 µs
 - ▶ Fréquence trame = 8680 Hz
- Flux de données
 - Sans suppression de zéro → 678 Mo/s = 5,5 Gb/s (Interne à Mimosa 26 → Pas en sortie de l'ASIC !)
 - Après suppression de zéro
 - ▶ Max ~ 19 Mo/s

Mimosa 26 : La Testabilité Intégrée ... prend de l'ampleur ...

→ Forte interaction Concepteurs / Testeurs pour définir la testabilité en amont du design de l'ASIC

Sortie Normale & Sorties de Test

- ► Sortie Normale → Après suppression de zéros
 - ▶ 2 Liens série LVDS @ 80 MHz ~ 10 kbits / trame
- ► Sortie de Test digitale → Avant suppression de zéros
 - ▶ 2 Liens série LVDS @ 10 MHz ~1 kbits / trame
- ► Sortie de Test analogique → Avant discriminateur
 - ▶ 8 Liens analogiques @ 10 MHz \rightarrow 576 échantillons / trame

Testabilité intégrée

- ▶ Impossible d'acquérir les données brutes (687 Mo/s)
 - **•** Tester des fractions / blocs de Mimosa 26
 - Permet de conserver le temps d'intégration nominal
 - **Balayage des blocs pour tester tout le chip**
- ► Test du pixel analogique → Limité à 8 colonnes / 1152
 - ▶ Possibilité de balayer les 1152 colonnes par blocs de 8
- ► Test des discriminateurs seuls
 - **Emulation du signal du pixel via référence DC**
- ► Test du pixel + discri (avant suppression de zéro)
 - ▶ Tester une ligne / 576 Balayage automatique de la ligne testée
- ► Test de la logique de suppression de zéro (SUZE)
 - **Rq : Traitement du SUZE effectué ligne par ligne**
 - ▶ Emulation de l'état de deux lignes consécutives (1152 colonnes)
- ▶ Test de l'interface digitale de sortie
 - Header, trailer de trame configurables
- **Slow control requis pour paramétrer ces modes d'opération**
 - **JTAG Environ 50 registres de configuration**

Mimosa 26 : Equipements requis pour le Test

5. Logiciels d'analyse des données

Mimosa 26 : Quel DAQ utiliser ?

Analogique

- ► Besoin
 - ▶ 8 Voies @ 10 MHz
- **Ce dont on dispose**
 - Carte ADC USB 4 voies 12 bits @ 50 MHz
- ► Solution ?
 - ► Deux cartes ADC USB
 - ► Carte de duplication & distribution d'horloge

Digital

- ► Besoin
 - ▶ 2 Voies @ 80 MHz
- ► Ce dont on dispose
 - Carte USB 16 voies @ 50 MHz
- ► Solution ?
 - ▶ Pas de solution avec les équipements du labo
 - Achat carte PXI NI 16 voies @ 200 MHz

- **Carte d'acquisition PXI 6562**
 - ▶ 16 entrées 200 MHz (SDR) / 400 MHz (DDR)
 - Mémoire sur la carte pour 1820 trames de Mimosa 26
- **•** Comment lire Mimosa 26 avec une carte standard ?
 - **Stocker des blocs de trames brutes en mémoire**
 - **Désérialisation** par le logiciel DAQ (en C ;-)

Mimosa 26 : DAQ Digital → Banc de Test

Architecture Client / Serveur : Châssis PXI = serveur de données + PC de supervision = client

15/10//2009

Mimosa 26 : DAQ Digital → Supervision

Application de Supervision : 4 Logiciels in 1

est Discriminators Register		Test Continuation	Test Status
Sampling Edge Frame Nb To Test Frame Size (Bits) Frame Nb / Acquisition	 ✓ Checked = Rising edge 500 1152 20 25 	Tests Sequence Func Id Sequence 0 = Single test sequence - 1 Test Debug print level	Current Test Current Acquisition Current Frame Errors Counter
Acquisition ND 10 Test Begin of Test Function Id Before Acq Function Id Data Check Function Id		FUserBegTest Single test 0 FUserBeforeAcq Single test 0 FUserDataChk Single test 0	

Quatre fonctions principales

- ► Test de trames connues émises par Mimosa 26 → Header, Trailer, etc ...
- ► Caractérisation des discriminateurs → Courbes en « S »
- ► Test de SUZE → Configuration pattern par JTAG Acquisition Comparaison / pattern attendu
- ► Acquisition et monitoring de la sortie en mode normal (ZS) → Tests en faisceau Mimosa 26 a beaucoup de modes de fonctionnement … Architecture DAQ Client / Server Développement & Tests ~ 3 Mois

Mimosa 26 : DAQ Digital → Caractérisation discriminateurs

Exemples d'outils inclus dans le logiciel de supervision du DAQ

Panneau de caractérisation des discriminateur

Mimosa 26 : DAQ Digital → Test SUZE

Modèle SW de configuration & d'acquisition pour les tests de SUZE → « Fonctions à compléter »

Mimosa 26 : En route vers les tests en faisceau ...

Tests final au laboratoire de Mimosa 26 et de son DAQ

Corrélation entre les positions d'impacts sur les deux plans du télescope dans les deux directions X et Y

Ce test ne permet pas de prouver le bon fonctionnement du DAQ, c'est « juste » la cerise sur le gâteau APRES avoir validé le DAQ en émulant des hits à des positions connues sur Mimosa 26

Mimosa 26 : Tests en faisceau au CERN (Pions 120 Gev)

Le DAQ développé pour les tests au labo est aussi utilisé en faisceau de test -> Un seul DAQ

Conclusion

Caractérisation de MAPS à suppression de 0 intégrée

Caractérisation d'un MAPS à sortie numérisée

- ▶ Pixel analogique : Calibration avec photons X Fe⁵⁵ à 5,9 Kev
- ▶ Discriminateur : Courbes en « S » Distributions Bruit et Seuil à 50 %
- Pixel + Discriminateur : Même type de mesures que discriminateur seul
- **Comparaison / Référence (Télescope à MAPS) : Faisceaux de test CERN**
- + Test & Validation de la logique de suppression de zéro
 - **Emulation de deux lignes de données des discriminateurs**
- ▶ La Testabilité intégrée ... prend de l'ampleur ...
 - **Design du MAPS plus complexe ... trouver le bon compromis**
 - Nombreux modes de fonctionnement à gérer côté slow control & DAQ
- Coût du test de Mimosa 26 ... Total ~ 2 Années / Homme
 - **Développer des outils réutilisables (Ex : JTAG ... développé en 1997 ... toujours utilisé)**
 - ► Favoriser le développement logiciel / matériel → Plus souple et Plus portable Quitte à perdre sur la cadence de mesure « l'event rate » … car c'est le prix de la souplesse

Notes / Avis : Mimosa 26 ... Do + 3 Jours ... Efficacité ?

Timing

- Mimosa 26 retour fonderie 18/02/2009
 - **•** Il faut le bonder sur PCB et faire les premiers essais
- ► Jugé opérationnel le 20/02/2009 → Do + 3 Jours !
 - ► Lecture Mimosa 26 OK et les pixels réagissent à la lumière
- ► Caractérisation de base 6 mois ... approfondie → 1 an
- ► Testé en faisceau au CERN début septembre
- Question !
 - Mais quand ont-ils testé leurs bancs de test ?

De l'intérêt de l'émulation ...

Du contrôleur JTAG de Mimosa 26 ... via FPGA Virtex 4

Les bancs de tests étaient ainsi testés et validés avant l'arrivée de Mimosa 26

Il n'y a pas de secret ... pour réussir ... il ne suffit pas d'être bon ... Il ne faut pas oublier de s'entraîner !

De la trame de sortie de Mimosa 26 ... via un générateur de pattern

Les Futurs blocs à intégrer ... et les MAPS en 3D ...

► Caractérisation d'ADC

- ▶ Objectif : Dynamique 125 mV 10 MS/s 25 μm pitch 500 μW
- WILIAM (Wilkinson & SAR) SARA (SAR) MAD (Résolution variable)

► Caractérisation de PLL et Sérialiseur 8B/10B

- ▶ PLL : 160 MHz Locking time 60 µs Jiiter < 20 ps → Présentation I.Valin
- ▶ 8B/10B : → Présentation G.Dozière

► Les MAPS en 3D ...

- > 3D 2 Tiers (Chartered A + D) → IPHC
 → 256 x 96 pixels Pitch 12 µm Shaper Discri Time stamp 30 µs
 → Acquisition pendant 1 ms & Readout 199 ms (Cycle ILC)
- > 3D 3 Tiers (Pixel XFAB 0,6 µm + Chartered A + D) → Collaboration IPHC & Bergamo & Pavia → 245 x 245 pixels Pitch 20 µm Shaperless Discri
 → STriPSet (Self-Triggering Pixel Tracker) Resolution 1 µs
- ► 3D 2 Tiers Rolling shutter → Collaboration IRFU & IPHC
 - → 32 x 256 pixels Pitch 20 µm Discri Principe de lecture de Mimosa 22

Nicolas PILLET

Kimmo JAASKELAINEN

gilles.claus@ires.in2p3.fr

Notes / Avis : Testeur Industriel de CI → DSP Analog Instrumentation

- ▶ Nous avons testé en même temps : un ADC, Mimosa 26, une PLL ... il eût fallu trois testeurs ...
- Dans le cas des MAPS un DAQ sera toujours nécessaire pour les tests avec source et en faisceau
- ▶ Quelle solution ... découpler le test des sous-ensembles électroniques (Testeur CI) / MAPS (DAQ) ?
 - Deux équipes test seraient nécessaires pour maîtriser les deux familles d'outils
 - ▶ Impossibilité de tester hors du labo les sous-ensembles électroniques (Ex : Test des discriminateurs en faisceau au CERN ...)

Quels que soient les équipements de Test → La priorité est la ressource Humaine

Le Test est un métier – Il doit s'apprendre – Il doit se transmettre

Les personnes impliquées dans les tests

Développement bancs de test ...

Tests & Caractérisation ... Transfert - Collaborations

Test de SUZE Montage & Test Cartes Développement HW & SW

Caractérisation MAPS & Tests d'irradiation **Conception SW Analyse**

Michael DEVEAUX

Michal KOZIEL

* Andrei DOROKHOV

Caractérisation des ADC

Collaboration IPHC / IRFU (CEA) **Conception MAPS Numériques**

Marie GELIN Caractérisation MAPS Analyses données faisceau

EUDET → Télescope faisceau

Antonio BULGHERONI Caractérisation MAPS Conception SW analyse faisceau

STAR → Upgrade VTx

Michal SZELEZNIAK Caractérisation MAPS Intégration / STAR

Sans oublier les physiciens qui analysent les données faisceau J.Baudot, M.Gélin, R.De Masi, CDritsa ...

Slow Control - Développement FW Conception – Caractérisation PLL – Liens Série Rapides

Kimmo JAASKELAINEN

Matthieu SPECHT

Emulation ASIC

Définition des bancs de Test - Coordination Développement SW DAQ & Monitoring

Gilles CLAUS

Conception de Cartes d'Acquisition Cartes de Test des MAPS

DAQ Test en faisceau

Développement FW

Cayetano SANTOS

15/10/2009

Caractérisation d'ASIC - La Londe les Maures - Octobre 2009

gilles.claus@ires.in2p3.fr

36/36

Transparents supplémentaires / Annexes

► ASIC lecture détecteurs à micro-pistes

Expériences ALICE & STAR	→ Page 38
Synoptique HAL 25	→ Page 39
Principe de lecture et émulation signal détecteur	→ Pages 40-41
IAPS	
MAPS pour les détecteurs de vertex	→ Pages 42-43
Télescope de faisceau équipé de MAPS (EUDET)	→ Page 44
Application d'imagerie biomédicale (SUCIMA & EBCMOS)	→ Pages 45-46
Principe de fonctionnement des MAPS	→ Pages 47-48
► Tolérance aux radiations	→ Page 49
► Tests de MAPS sur wafer (Cas de Mimosa 5)	→ Pages 50-52
Slow control de Mimosa 26	→ Page 53
Readout de Mimosa 26	→ Page 54-55
DAQ USB pour les MAPS analogiques	→ Pages 56-57

Annexes : ASIC (Alice 128C & HAL 25) Pour STAR & ALICE

STAR (Solenoid Tracker At RHIC) – 2002 ... QPG – Collisions faisceaux Ions Au-Au @ 130 à 200 GeV

Silicon Vertex Tracker

- 3 Couches internes SDD
 - 13.10⁶ canaux Pitch 25 µm
- 1 Couche SSD
 - 0,5.10⁶ Pistes Si Pitch 95 μm
 - Lecture 5 ms
 - 1 kRad/an 10 ans
 - ALICE128C 20 kRad

ALICE (A Large Ion Collider Experiment) @ LHC – 2007 QPG – Collisions faisceaux Ions Pb - Pb @ 5,5 TeV

Silicon Vertex Tracker

- 2 Couches de pixels Si SPD = 14.10⁶ Pixels
- 2 Couches de drift Si $SDD = 192.10^3$ Canaux
- 1 Couche strip Si SSD
 - 2,6.10⁶ Pistes Si 95 μm
 - Lecture 2 x 768 pistes @ 10 MHz ~ 153 µs = 65 kHz
 - L0 50 kHz L1 6,5 kHz L2 60 Hz
 - 1 kRad/an 10 ans Mais instantané > 10 kRad
 - HAL25 200 kRad

Annexes : HAL 25

SCHEMA SYNOPTIQUE DE HAL 25

Annexes : HAL 25

CYCLE DE LECTURE DE HAL 25

JETON TokenIn / TokenOut

CYCLE DE LECTURE DE HAL 25

Injection d'une impulsion de test sur les canaux 1 et 6

Annexes : MAPS → Détecteurs de Vertex

ILC Vertex Detector – 201X Collisions faisceaux e+ e- @ 500 GeV ... 1 TeV

- 3 Couches de MAPS
- 13.10⁶ Pixels Pitch 30 µm
- Lecture 1 ms Integration 0,2 ms
- 30 kRad/an 1,2 10¹² n_{eq}/cm²/an
- Nouveau détecteur
- 5 Couches de MAPS
- 300 à 500.10⁶ Pixels Pitch 20 à 40 μm

QPG – Collisions faisceaux Ions Au-Au @ 130 à 200 GeV

- Lecture 25 à 200 μs
- 50 kRad/an $10^{11} n_{eq}/cm^2/an$

CBM (*a*) FAIR Vertex Detector- 201X **QPG – Collisions Cible Fixe Ions Au** (*a*) **25 – 40 GeV**

- Nouveau détecteur
- 3 Couches de MAPS
- ? * 100.10⁶ Pixels 20 à 40 μm
- Lecture 10 µs
- < 1 MRad/an $10^{13} n_{eq}/cm^2/an$

Performances des différents détecteurs à pixels

Détecteurs pour International Linear Collider (ILC) ...

Paramètre	Objectif ILC	Hybrid Pixels	CCDs	MAPS
Resolution spaciale	<= 5µm	~30µm	~5µm	1,5µm
Epaisseur	~50µm Si	~500µm	~50µm	~120µm
Vitesse de lecture	~30µs	~25ns	??	Under study
Tenues aux radiations	$>= 5 \times 10^{10} n_{eq}$	$> 10^{14} n_{eq}$	$\sim 10^9 n_{eq}$	$\sim 10^{12} n_{eq}$

Annexes : MAPS → Projet EUDET : Télescope de faisceau

But & Moyens

- ▶ Infrastructures nécessaires à la R&D détecteurs pour l'ILC
- ▶ Budget 21,1 ME 31 Instituts Durée 4 ans (2006-2009)
- ▶ 3 Join Research Activities (JRA)
 - JRA1 : Faisceau + Télescope MAPS
 - **JRA2** : Tracking Detectors
 - ► JRA3 : Calorimeter

IPHC Strasbourg – Télescope MAPS

- ▶ Démonstrateur : été 2007 6-8 plans 0,6 cm² R < 5 µm 100 Hz
 - Développement MAPS MimoStar 3 M (lecture analogique)
 - **•** Organisation d'une semaine de formation en Mars 2006
 - **Fourniture de 3 bancs de tests USB (Genève, Hambourg, Rome)**
 - Présentation d'une solution DAQ USB démonstrateur : 6 Plans 40 Hz
- ► Télescope final : 2009

▶ 6-8 plans ~ 4 cm² - MAPS lecture digitale – Suppression de zéro – Acquisition 1 kHz

Annexes : MAPS → Applications d'Imagerie Biomédicale

SUCIMA : Silicon Ultra fast Cameras for electron and gamma sources In Medical Applications Projet financé par la Communauté Européenne – 5^{ième} PCDR

Successor 4 – AMS-06

.

- Profil de faisceaux => Protonthérapie
- Surface : 19x17 mm2
- 112 x 112 Pixels Pitch 153 μm
- Lecture 10 kHz / frame 40 MHz Série
- Radiations << Successor 4 ~ 100 kRad
- Amincissement 15 μm

Tumeur Mesure du profil du faisceau Détecteur CMOS TER d'aluminium électrons secondaires au de protons "Stent" INICO Avant irradiation Après irradiation

- Successor 5 AMIS-035
 - Dosimétrie des sources Beta en Curiethérapie endovasculaire
 - Source ~ GBq

15/10//2009

- Surface : 9x9 mm2
- 256 x 256 Pitch 30 μm
- Lecture série 20 MHz
- Radiations : Successor 5 ~ 2 MRad

Annexes : MAPS → Application d'Imagerie Biomédicale

Imagerie Biomédicale : Neurosciences & Embryogénèse

Minimum Ionizing Particle MOS Active Pixel Sensor

MIMOSA IV

$\underline{\mathbf{MIMOSA} (\mathbf{I} - \mathbf{V}):}$

- Resolution 1.5µm 2.5µm
- Pitch typique des pixels $\sim 20 \mu m$
- Amincissement 120µm (1 Wafer 50µm...)
- S/N pour MIPs 20 40
- Efficacité de détection > 99,5 99,9 %
- Capteur 1MPixel lecture en ~10ms (20 MHz)
- Tolérance aux radiations : 1 MRad & ~ $10^{12}n_{eq}/cm^2$

15/10//2009 Caractérisation d'ASIC - La Londe les Maures - Octobre 2009

Annexes : MAPS → Tolérance aux radiations

Ionisantes => Atomes excités

- Charges accumulées dans les isolants
- Effets de surface partiellement compensables en chauffant
- Augmentation du courant de fuite
- Augmentation du bruit
- Pas de réduction de la collection de charge (au premier ordre)

Non Ionisantes => Atomes déplacés dans le cristal

- Défaut cristal => réduction temps de vie e- (Recombinaison)
- Génération e- thermiques => Courant de fuite & bruit
- Augmentation du courant de fuite
- Augmentation du bruit
- Réduction de la collection de charge (Recombinaison)

Pour augmenter la tolérance aux radiations

- Techno submicroniques
- Anneaux de garde Diode détection Transistors
- Augmenter épaisseur couche EPI (Compense perte signal en non ionisant)

Annexes : Mimosa 5 Yield - SUCIMA collaboration meeting @ Ispra – 3-5/02/2003

MIMOSA 5 YIELD ESTIMATION BASIC TEST

- Basic test based on power supply current measurement
 - Static state (no readout cycle)
 - Easy detection of bad chips (short circuit)
 - May 2002 => Yield ~ 33 %

- Histogram of power current
- Mean value ~ 12,5 mA
- Criteria 10 16 mA => Yield ~ 33 %

Questions

- Boundaries definition ?
- What about "good chips" ? (good pixels ?)

Annexes : Mimosa 5 Yield - SUCIMA collaboration meeting @ lspra – 3-5/02/2003

Annexes : Mimosa 5 Yield - SUCIMA collaboration meeting @ lspra – 3-5/02/2003

MIMOSA 5 YIELD ESTIMATION RESULTS

- Tests results
 - 5 wafers + 24 chips => 189 chips tested
 - 45 chips are working (< 5 % broken pixels)</p>
- How chips are broken ?
 - Full matrix => short circuit (~ 50 %)
 - Full line or row => reset or readout electronic (~27 %)
- Next step ... thermal analysis ... in order to understand
- Answer to basic test questions
 - We can reduce boundaries up to +/- 10 %
 - Bad chips are "short circuit like "by matrix or by lines / row

=> Yield ~ 23 %

Annexes : Slow Control de Mimosa 26 → JTAG

A Windows application to Control the ~ 50 Configuration Parameters of Mimosa 26

► Uses JTAG slow control via PC parallel port

- ▶ Requires a free // port on PC
- ▶ We provide the software as an executable GUI Windows application

► A COM interface allows to control JTAG application by a third party software

• JTAG can be controlled by DAQ software

15/10//2009

Annexes : Readout de Mimosa 26

Readout configuration N° 3 : 2 outputs @ 80 MHz

▶ Provides the whole states memory size : 1140 W16 (word of 16 bits) – 570 W16 / link

Summary

Data generated on rising edge of Mimosa 26 clock

▶ Header	→ 16 bits / output							
► Frame counter	\rightarrow 16 bits / output							
Data length (useful part of data)	\rightarrow 16 bits / output (Sum the 2 W16 to get matrix W16 size)							
► Data (format on next slide)	\rightarrow Max = 570 x 16 bits / output							
► Trailer	\rightarrow 16 bits / output							
Padding zero	→ 32 bits / output							
► Total stream size per output : 9216 bits = 576	W16 = 1152 W8							

Readout configuration N° 3 : 2 outputs (D0, D1) @ 80 MHz

▶ If there is at least one hit in one line, the following data stream is generated

- ► Status/Line word
 - Address of line
 - Number of States (9 Max, overflow flag if > 9)
- States list One state = consecutive pixels at 1 in the line
 - **•** Column address of the first pixel at 1
 - ▶ Number of pixels at 1 Warning : 0 means one pixel at 1 (value → pixel nb : $0 \rightarrow 1, 1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 4$)
- **•** For each line with hit : one Status/line followed by up to 9 States

Status/ line															
0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5
Bit(0-3) Bit(0-10)															
n	number of States The address of the line								O V F						

State															
0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	15
Bit(0-1) Bit(0-10)															
numb of hi pixel	number of hit the address of the column pixels										n	ot us	ed		

Annexes : MAPS USB DAQ – EUDET collaboration meeting @ Hambourg – 04/11/2005

Why a New DAQ : VME \rightarrow USB ?

- Very Low Data Bandwidth 4 MB/s
- ▶ MAPS Digital outputs No way
- **Readout frequency Max 20 Mhz**
- ► On Board Data Sparcification No way
- More generic sequencer (MAPS Digital Ctrl)
- ▶ Software ... Linux ... Windows ...

Status ?

- ► Board Ready
- ► Lab MAPS test bench operationnal (Summer 2005)
- **Final IReS USB DAQ Software for Summer 2006**
 - Multiple boards ... USB bandwidth ...
 - Dynamic Variable Size event data format
 - Windows ROOT monitoring
- Generic sequencer for end of Summer 2006

DAQ USB 2.0

Analog

- 1-4 ADC 12 bits 40 Mhz
- 1 ADC 14 bits 100 MHz
- 10⁶ pixels **shared** 1-4 Inputs

Digital

- Pattern generator & Trigger
- 16 Digital inputs

Daq

- Transfer 15 MB/ s USB 2.0
- Firmware (To Be Done)
- CDS Calculation (Done)
- Pedestal substraction
- Data sparcification

Supervision PC Windows

Annexes : MAPS USB DAQ – EUDET collaboration meeting @ Hambourg – 04/11/2005

USB 2 ADC BOARD SYNOPTIC

- 4 analog input channels 40 MHz (65 MHz) 12 bit 1 MByte static RAM
- Virtex II (board controller, on-line processing)
- USB 2 data transfer (up to 50 Mbytes / s ?)
- VME format => can be plugged in a VME crate