HIGH DATA RATE LINKS FOR HIGH ENERGY PHYSICS

Paulo Moreira CERN, Switzerland

ECOLE IN2P3 DE MICROÉLECTRONIQUE 23 – 27 JUNE 2013, PORQUEROLLES FRANCE

Credits

This slides were prepared with basis on the work of several people. Among them the most important contributions are from:

- Ozgur Cobanoglu ISKO, Turkey
- Rui Francisco CERN, Switzerland
- Ping Gui SMU, USA
- Gianni Mazza INFN, Italy
- Mohsine Menouni CPPM, France
- Lukas Perktold CERN, Switzerland
- David Porret CERN, Switzerland
- Filip Tavernier CERN, Switzerland

Outline

- A quick "flight" over digital communications
- Multi-Gb/s CMOS Design
- Power Dissipation In CMOS Circuits
- Optoelectronics Data Transmission Links
- All that you don't (should) care about:
 - ESD Protection Circuits
 - Introduction
 - Input Matching using Coupled T-Coils
 - Input Matching using Inductive Compensation
 - Connectors, PCB & PACKAGE
- Laser Driver Design
- PIN Receiver Design
- Assembling ASICS
- "Analogue-Verilog"
- Handling SEUs

A QUICK "FLIGHT" OVER DIGITAL COMMUNICATIONS

Digital Communications

- Digital communication systems are widely used for data acquisition, trigger and control links in HEP:
 - A few exceptions: e.g. the CMS tracker data links
- Advantages:
 - Digital communications can be done virtually error free
 - When appropriate codes are used, transmission errors can be:
 - Detected
 - Corrected
 - They are "natural" for digital systems
 - Easy handling of multiple data sources and destinations
 - Easy re-routing between multiple sources and destination

Typical Architecture

BW – Limited Channel (1/2)

BW – Limited Channel (2/2)

- Due to the limited channel bandwidth the transmitted pulses are broadened in time.
- If the broadening is significant, the signal corresponding to one symbol (bit) will overlap in time the signal of the next symbol!
 - This is called Inter Symbol Interference (ISI)
 - ISI is seen in an eye-diagram as:
 - Vertical eye-closure:
 - Reduction of the vertical eye-opening
 - Horizontal eye-closure:
 - Random positions of the threshold level crossings (Jitter or Phase Noise)
 - Equalization (high-pass filtering in this case) can be used to "restore" the signal high frequency content:
 - Reduces ISI
 - Improves Jitter
 - Can never fully compensate the channel
 - Two additional steps are needed to restore the signal to their "original" shape:
 - Threshold detection, restores the symbol levels by comparing a signal with a " predefined" level
 - The **signal is retimed** using the recovered clock, eliminating the jitter
- Two additional phenomena impair error free data transmission:
 - Attenuation
 - Noise

.

Noise

• The average bit error probability:

$$P_e = P(0|1) \cdot P(1) + P(1|0) \cdot P(0)$$

• It is a strong function of the signal to noise ratio:

$$SNR_1 = \frac{V_1 - D}{\sigma_1}$$
 $SNR_0 = \frac{D - V_0}{\sigma_0}$

- In the limit the measured Bit Error Rate BER is equal to P_e
 - SNR = $6 \rightarrow BER = 10^{-9}$
 - Testing time to "count" 100 errors: 20 s @ 5 Gb/s
 - SNR = $7.9 \rightarrow BER = 10^{-15}$
 - Testing time to "count" 100 errors: 231 days @ 5 Gb/s

Paulo.Moreira@cern.ch

Jitter

- Moving away from the optimum sampling instant drastically increases the BER because the SNR decreases due to:
 - Signal jitter
 - Signal finite rise and fall times
 - The signal magnitude |V–D| decreases because of the finite raising/fall times of the signal
- Two main causes for non-optimum sampling:
 - Retiming clock static phase error
 - E.g. due an unbalance in the CDR PLL charge-pump
 - Retiming clock jitter
 - E.g. due to the CDR tracking behaviour or VCO noise

Error Control Coding

- Due to Noise and ISI the received message might differ from the transmitted
 - Some of the transmitted bits will be wrongly detected
- Error control coding introduces extra bits in the transmitted message:
- These allow to:
 - Detect the presence of errors
 - Correct detected errors
- Error control is done at the expense of bandwidth

Even parity: Parity bits are computed such that the number of "1s" in each row and column is even

	Transmitted message				Row parity			
K	[6]	[5]	[4]	[3]	[2]	[1]	[0]	R.P.
н	1	0	0	1	0	0	0	0
i	1	1	0	1	0	0	1	0
g	1	1	0	0	1	1	1	1
g	1	1	0	0	1	1	1	1
S	1	1	1	0	0	1	1	1
C.P.	1	0	1	0	0	1	0	1
Column parity Matrix parity								

Received message

	/							
K	[6]	[5]	[4]	[3]	[2]	[1]	[0]	R.P.
н	1	0	0	1	0	0	0	0
i	1	1	0	1	0	0	1	0
g	1	1	0	0	1	1	1	1
f	1	1	0	0	1	1	0	1
S	1	1	1	0	0	1	1	1
С.Р.	1	0	1	0	0	1	0	1
							A	

Discrepancy between the received row/column parities and the parities computed by the receiver!

Line Coding

- Apart from detecting and correcting errors, coding is also applied to condition the signal to the transmission medium and/or the transmitter/receiver architecture. This is called line coding.
- Most common addressed problems are:
 - DC wander caused by AC coupling ("high-pass" type response), see figure below:
 - DC blocking between circuits
 - Laser-driver mean power control
 - Offset cancelation circuits in pin-receivers
 - Lack of signal transitions to keep the RX clock locked on the data
- Line codes typically have the following properties:
 - limit the low frequency content in the signal spectrum
 - Guarantee a high density of symbol transitions
- Some popular examples:
 - 8B/10B
 - Scrambling

Input						
Disparity	+	0	-			
000	1101		0010			
001		1001				
010		1010				
011		0011				
100		1100				
101		0101				
110		0110				
111	1011		0100			

3B/4B

Example: The GBT Frame (1/3)

- Link bandwidth: 4.8 Gb/s
- Payload: 3.36 Gb/s
- DC balance:
 - Scrambler
 - No bandwidth penalty
- Forward Error Correction:
 - Two encoders
 - Each encoder receives 44 bits and computes a 16 bit FEC code
 - Code: Reed-Solomon double error correction
 - 4-bit symbols (RS(15,11))
 - Interleaving: 2
 - Error correction capability:
 - $2_{\text{Interleaving}} \times 2_{\text{RS}} = 4 \text{ symbols} = 16 \text{-bits}$
- GBT frame efficiency: 70%
 - A line code is always required for DC balance and synchronization
 - For comparison, the Gigabit Ethernet frame efficiency is 80% (at the physical level 8B10B coding)
 - At a small penalty (10%, when compared with the Gigabit Ethernet) the GBT protocol will offer the benefits of Error Detection and Correction

Example: GBT Coding Architecture (2/3)

Example: GBT Forward Error Correction (FEC) (3/3)

- Radiation levels at 20 cm radius from the beam:
 - 2 ×10¹⁵ neutrons/cm²
 - 1 × 10¹⁵ hadrons/cm²
 - 500 kGy total dose
- High rates of Single Event Upsets (SEU) are expected for SLHC links:
 - Particle "detection" by Photodiodes used in optical receivers
 - SEUs on PIN-receivers,
 - SEUs on Laser-drivers
 - SEUs on SERDES circuits
- Experimental results confirmed that:
 - Error correction is mandatory to achieve errorrates $\leq 10^{-12}$
 - Upsets lasting for multiple bit periods will occur on PIN detectors!
 - Upset lasting for multiple frames can occur in commercial TIAs

MULTI-GB/S CMOS DESIGN

Basic CS-Amplifier

Frequency Response: CS Amplifier

Paulo.Moreira@cern.ch

Performance (Gain & BW) Depends on I_{ds}

Biasing for Maximum g_m

Paulo.Moreira@cern.ch

"Available" Bandwidth: CS Amplifier

Paulo.Moreira@cern.ch

Invariance of Characteristic Current Densities (1/6)

- As a result of constant-field scaling the optimum current densities remain largely invariant over technology nodes:
 - $\quad J_{opt}(f_T)\approx 0.3 \; mA/\mu m$
 - $\quad J_{opt}(f_{MAX})\approx 0.2 \ mA/\mu m$
 - $\quad J_{opt}(NF_{MIN})\approx 0.15 \; mA/\mu m$
- The optimum current densities are basically independent on:
 - Technology node
 - Foundry
 - Gate length
 - Threshold voltage
- It is valid for NMOS as well as for PMOS
 - PMOS optimum current densities are 40% to 45% of the NMOS values

$$J = \frac{I_D}{W} \quad [in \ mA/\mu m]$$

(T. O. Dickson et al. - JSSC vol. 41, no. 8, p. 1830, August 2006)

Transistors with various gate lengths in the 90-nm node.

Peak f_T current density:

- $J_{opt}(f_T) \approx 0.3 \text{ mA/}\mu\text{m}$
- Independent of the gate length within a technology node
- Identical for Bulk and SOI

• Threshold voltages

Invariance of Characteristic Current Densities (6/6)

Rule of thumb for high-frequency design:

- All rules of thumb must be <u>critical accessed</u> for the case at hand!
- Employ constant density biasing techniques
- Bias the NMOS transistors in between:
 - The peak f_T and peak f_{MAX} for high bandwidth:
 - $J_{opt} \in$ [0.2 mA/µm, 0.3 mA/µm]
 - Or optimum NF_{MIN} for low noise:
 - $J_{opt} \approx 0.15 \text{ mA/}\mu\text{m}$
- For PMOS transistors use current densities are 40% to 45% of the NMOS values
- This should result in a design that is robust against process variations (1st order assumption):
- Signal headroom might dictate that lower current densities need to be used
 - The optimum values for f_T , f_{MAX} and NF_{MIN} for are relatively broad
 - Using $0.5 \times J_{opt} < J < J_{opt}$ has little influence on performance and can significantly reduce power consumption and/or increase signal handling ability

Application to NMOS – CML Gates

Paulo.Moreira@cern.ch

Transistor Layout: Capacitances

- The gate capacitance is typically dominated by the gate-to-channel (oxide) capacitance (even for relatively small devices): $C_g = C_{ox} \cdot W \cdot L + C_{overlap} \cong C_{ox} \cdot W \cdot L \quad (since C_{ox} \cdot W \cdot L \gg C_{overlap})$
- Source and drain (C_{sb} and C_{db}) capacitances are diffusion capacitances composed of:
 - Bottom-plate capacitance:

$$C_{bottom} = C_j \cdot W \cdot L_s$$

- Sidewall capacitance:

$$C_{sw} = C_{jsw} \cdot \left(2 L_s + W\right)$$

- In small devices the sidewall capacitance dominates
- Increasing W decreases the relative importance of the sidewall capacitance
- Large devices have thus relatively smaller source and drain parasitic capacitances

Transistor Layout: Multi-finger Devices

Multi-finger devices have:

- Smaller drain diffusion capacitance:
 - Basically "no" sidewall drain capacitance:
 - Channel on both sides of the drain diffusion
 - A small fraction still remains at the transistor edges:
 - Mainly when an odd number of fingers is used
 - So, no odd number of fingers in the designs!
- Less than half the bottom plate capacitance:
 - Design rules "impose" larger diffusion on the periphery then that in between gates
- Smaller gate resistance:
 - In the example:
 - Two 1/2 width gates
 - Drive ¹/₂ the gate capacitance each
 - Leading to "1/4 " RC delay
 - Gate resistance can be further decreased by contacting on both sides of the gate

"Available" Bandwidth: Multi-Finger Devices

BW Broadening: Resistive Load (1/2)

Add a load resistor R_{ld} in parallel with "R_{ds}":

- The output pole will increase: - $f_{3dB} = 1/[2 \pi (R_{1d} || R_{ds}) C_{gs}]$
- The gain will decrease: - $G = g_m (R_{Id} || R_{ds})$
- To a first approximation the gain bandwidth shouldn't change:
 - GBW = $g_m / [2 \pi C_{gs}]$
 - (44.8 GHz in the example considered)
- <u>However</u>, the above neglects the Miller capacitance:
 - GBW = $g_m / [2 \pi (C_{gs} + C_{Miller})]$
 - GBW = 13.7 GHz
- Since the gain decreases as the load resistance decreases the Miller capacitance (due to C_{gd}) also decreases
- Due to the lower gain, the Miller capacitance is smaller than that of the basic CS stage and the GBW is thus higher than that of the basic CS stage
- In practice the current source (represented in the figure) is avoided altogether and the transistor biased through the load resistor. This avoids the output capacitance C_{db} of an additional current source
 - The parasitic capacitance of the load resistor must be taken into account

BW Broadening: Resistive Load (2/2)

- The Gain-Bandwidth is:
 CS: 13.7 GHz
- A zero exists in the transfer function due to the frequency dependence of the Miller capacitance.
 - The next stage transfer function has at minimum a single pole
- Both corner frequencies are dependent on the badly controlled C_{gd} and on the openloop gain of the next stage.

BW Broadening: Impedance "transforming"

To achieve a high Gain-Bandwidth product:

- Isolate the 1st Gain stage as much as possible from the 2^{nd:}
 - That is, lower the capacitive loading of the 1st stage
- Drive the second stage with as low as possible impedance:
 - That is, move as high as possible the pole introduced by C_{gs} and the Miller capacitance of the 2nd stage
- In other words, transform the impedance that stage 1 represents to stage 2 and vice versa.
- A common-drain (CD) stage can do that job. It has a:
 - High input impedance: $Z_{in} \cong Z[C_{qs}, C_{qd}]$
 - No Miller multiplied capacitance
 - Bootstrapped C_{qs}
 - Low output impedance $Z_{out} \cong 1/g_m$

BW Broadening: CS-CD Gain "Stage" (1/2)

- The Gain-Bandwidth has considerably increased:
 - CS: 13.7 GHz
 - CS-CD: 63.1 GHz
- The frequency response of the CS-CD "stage" is almost "single pole":
 - The Miller multiplied capacitance C_{gd} is driven by the low impedance of the common drain stage (1/g_m)
 - The second stage pole is pushed to a very high frequency
 - The dominant pole is now:
 - $f_{3dB} = 1/[2 \pi (R_{ld} || R_{ds}) C_{n1}]$
 - Where C_{n1} is the "bootstrapped" gate capacitance of the CD stage plus parasitics
- The CD buffer stage has some drawbacks:
 - Additional power consumption
 - Harder to bias for low supply voltages:
 - Additional V_{gs} drop.
 - $V_{dd} \le 1.5 \text{ V}$ for 0.13 μm CMOS

BW Broadening: CS-CD Gain "Stage" (2/2)

Paulo.Moreira@cern.ch
BW Broadening: Cherry & Hooper Gain "Stage" (1/3)

- Cherry and Hooper introduced in 1963 a technique that allows to achieve Gain-Bandwidth products of the order of 90 % of f_T for bipolar transistor circuits. The principle can be applied to MOS circuits
- The basic ideas are:
 - All the nodes in the signal path are low impedance
 - Voltage amplification is achieved by a cascade of two stages: a G_m stage followed by a transimpedance (T_z) stage
 - For maximum signal transfer the stages must alternate in a succession of high-impedance / low-impedance stages
 - For bipolar transistors due to the relative low impedance of the base, this was implemented as alternating series-feedback / shuntfeedback stages
 - MOS are inherently high input impedance stages so a series feedback stage is strictly speaking not necessary
 - In MOS circuits series-feedback can be used to set accurately the gain. However, this will cost power and will increased noise (reduction of the first stage effective G_m).

BW Broadening: Cherry & Hooper Gain "Stage" (2/3)

- The Gain-Bandwidth has increased again:
 - CS: 13.7 GHz
 - CS-CD: 63.1 GHz
 - CH: 102.3 GHz
 - The frequency response is now dominated by two poles not too distant $(f_1 > f_2/10)$
 - The transfer function displays a second order roll-off
 - Like the CS-CD stage the CH stage has some drawbacks:
 - Additional power consumption
 - Not easy to bias either

BW Broadening: Cherry & Hooper Gain "Stage" (3/3)

BW Broadening: Inductive Peaking (1/2)

- Add an inductor in series with the load resistor
- The bandwidth can be extended up to 1.85 times
- For optimum group delay response the BW gain is 1.6 times
- The circuit displays a second order transfer function
 - The frequency response is characterized by the ratio "m"

 $L = m.R^2.C$

Factor m	Normalized f _{3dB}	Response
0	1.00	No shunt peaking
0.32	1.60	Optimum group delay
0.41	1.72	Maximally flat
0.71	1.85	Maximum bandwidth

BW Broadening: Inductive Peaking (2/2)

Power optimization:

- For a CML stage the bandwidth can be enhanced by increasing the tail current:
 - By reducing R_L at fixed ΔV
- Or, for by using inductive peaking for a given current and R_L
- It should then be clear that a specified bandwidth can be achieved with lower current if inductive peaking is used.
 - See "active inductive" peaking example later.

BW Broadening: Active "Inductive" Peaking (1/3)

- The main drawback of inductive peaking is the large area required by the peaking inductors
- The impedance "looking" at the source of a Common Gate stage can be "made inductive"
- That is, it has a zero in the transfer function if the gate is "driven" by a resistor (R_p)
- By choosing the value of R_p it is possible to place the zero so that it compensates for the pole in the gain stage
- Bandwidth improvements up to 34%
 are possible
- It has however some disadvantages:
 - The voltage headroom to process signals is decreased
 - The noise performance is also slightly degraded

BW Broadening: Active "Inductive" Peaking (2/3)

Ecole IN2P3 de microélectronique

Paulo.Moreira@cern.ch

BW Broadening: Active "Inductive" Peaking (3/3)

For the same delay "inductive" peaking gives a power consumption advantage

Paulo.Moreira@cern.ch

POWER DISSIPATION IN CMOS CIRCUITS

Power Dissipation and CMOS Circuits

- No matter the complexity of the circuit (logic gate, Flip-Flop, ...), a CMOS circuit can be "seen" as:
 - current source and a current sink driving
 - a capacitance (other circuits and interconnects)
- The beauty of CMOS circuits is that:
 - Energy is only dissipated during the "0" \rightarrow "1" and "1" \rightarrow "0" transitions.
 - A "standing still circuit" consumes no power!
 - If we ignore leakage currents, of course!

Reducing CMOS Power Dissipation

- High frequency = High power consumption
 - Power consumption is proportional to <u>f</u>
 - Always run the circuits at the lowest useful frequency!
- When a circuit is not "playing a useful role" stop the clock for that circuit or sub-circuit:
 - No transitions "no" power consumption!
- If compatible with the operation speed and noise margins use low supply voltages!
 - Power consumption is proportional to \underline{V}^2
- Design circuits with "minimum" transistor sizes whenever possible!
 - Power consumption is proportional to <u>C</u>
 - However, make sure the rise/fall times are short to avoid the "short-circuit current"
 - Optimize the circuit for low gate count.
- Minimize the interconnect capacitance.
- Optimized the circuit/gate layout to reduce parasitic capacitances.

Can Technology Scaling Help to Keep it Cool?

- Technology scaling has a threefold objective:
 - Increase the transistor density
 - Reduce the gate delay
 - Reduce the power consumption
- Between two technology generations, the objectives are:
 - Doubling of the transistor density
 - Reduction of the gate delay by 30% (43% increase in frequency)
 - Reduction of the power by 50% (at 43% increase in frequency)

- Ideally, CMOS technologies evolution (scaling):
 - All the device dimensions (lateral and vertical) are reduced by $1/\alpha$
 - Concentration densities are increased by α
 - Device voltages reduced by $1/\alpha$
- Typically:
 - $1/\alpha = 0.7$ (30% reduction in the dimensions)
 - $\alpha = 1.41$
- In Practice a lot more than that is going on!

A "Practical" Case

 $\beta = \alpha \times \alpha$

- Two non-consecutive generations: 130 nm \rightarrow [90 nm] \rightarrow 65 nm
 - One generation: α = 1.43
 - Two generations: $\beta = \alpha^2 = 2$
- The actual scaling between the two technology nodes considered is:
 - $-\beta = \beta_L = \beta_W = \alpha^2 = 130 \text{ nm} / 65 \text{ nm} = 2$
 - $-\beta_{V} = 1.5 \text{ V} / 1.2 \text{ V} = 1.25$
 - β_{OX} = 3.03 nm / 2.69 nm = 1.13 (Low Power flavour)

Deviation from the "ideal" scaling "law"

- β_{OX} = 3.03 nm / 2.00 nm = 1.52 (General Purpose flavour) _
- Let's try to understand how much gain in power dissipation can be obtained if a circuit is ported over two generations under the following conditions:
 - Geometries are scaled according to the technology scaling:
 - That is W and L are reduced according to scaling α = 1.43 per generation
 - Supply reduced according the practical scaling
 - Frequency:
 - 1st Case: Profit to increase the frequency by a factor of 2
 - 2nd Case: In HEP (LHC) 40 MHz is a kind of "Good given" frequency so let's keep the operation frequency constant!

How Much Can We Get From Technology Scaling? (1/2)

CMOS Logic

- Capacitance scaling:
 - $C = \varepsilon_{ox} / t_{ox} \times W \times L$
 - $1 \rightarrow \beta_{ox}/\beta^2 = 0.28$ (LP)
 - $1 \rightarrow \beta_{ox}/\beta^2$ = 0.38 (GP)
- 1st Case: f scales as $1 \rightarrow 2$ (between two nonconsecutive generations, $\beta_f = 0.5 (1/\beta_f = 2)$)
 - Ideal
 - Power: $C \times V^2 \times f$
 - One generation scaling: $1 \rightarrow (1/\alpha)^2 = 0.5$
 - Two generations scaling $1 \rightarrow (1/\alpha)^4 = 0.25$
 - Actual two generations
 - 1 $\rightarrow \beta_{OX} / (\beta_f \times \beta^2 \times \beta_V^2)$ = 0.36 (LP)
 - 1 $\rightarrow \beta_{OX}$ / ($\beta_f \times \beta^2 \times \beta_V^2$) = 0.49 (GP)
- 2nd Case: $f \rightarrow 1 \ (\beta_f = 1)$
 - Ideal
 - Power: $C \times V^2 \times 1$
 - One generation scaling: $1 \rightarrow (1/\alpha)^3 = 0.35$
 - Two generations scaling: $1 \rightarrow (1/\alpha)^6 = 0.12$
 - Actual
 - 1 $\rightarrow \beta_{OX} / (\beta^2 \times \beta_V^2) = 0.18 \text{ (LP)}$
 - 1 $\rightarrow \beta_{OX} / (\beta^2 \times \beta_V^2) = 0.24 \text{ (GP)}$

- Interconnect capacitances will prevent such a good results!
- Leakage currents as well (not taken into account here!)

Even though this is a "first order" analysis, it clearly shows that moving up in the technology node gives a clear advantage in terms of power consumption! Within a technology node the choice of "flavour" also makes a difference.

How Much Can We Get From Technology Scaling? (2/2)

Current Mode Logic

- "Fixed" current buffers (e.g. LVDS, SLVS,...):
 - Current and voltage signal levels stay the same:
 - Specified current and load impedance
 - Only supply voltage scales!
 - Power scaling:
 - Power: $I \times V \rightarrow 1/\beta_V = 0.8 (LP/GP)$
- Fast Current Mode (and high bandwidth "Analogue"):
 - Ideal:
 - Power: $V_{DD} \times W \times J_{opt}$
 - Keeping the current density constant
 - One generation scaling: $1 \rightarrow 1/\alpha^2 = 0.49$
 - Two generations scaling: $1 \rightarrow 1/\alpha^4 = 0.24$
 - Actual:
 - $1 \rightarrow 1/\beta_V \times 1/\beta_W \times 1 = 0.4$ (LP/GP)

OPTOELECTRONICS DATA TRANSMISSION LINKS

HEP Data Link

"Typical" Signal Path for Data Transmission Systems (1/2)

"Typical" Signal Path for Data Transmission Systems (2/2)

Ecole IN2P3 de microélectronique

Paulo.Moreira@cern.ch

High Speed Data Link Design

- The design of high speed data links requires careful design and modelling of all the elements in the signal path!
- Don't overlook "innocent" components:
 - Laser bias circuit
 - PIN bias circuit
 - ESD protection
 - Package
 - Connectors
 - PCB
- It is not enough to have high performance optoelectronics and ASICs!
- Equally important are:
 - Package selection / design
 - PCB design
 - Connectors
- In your simulation test benches make sure to use realistic signal sources and loads:
 - At high frequencies there is no such a thing as a 'zero' impedance voltage source or 'infinite' impedance current source.

Your Simulation Test Bench is Important!

 Once an input matching network was included in the ASIC the circuit revealed excellent performance!

- Source impedance inaccurately modelled:
 - ESD impact unrevealed by simulations!
- Jitter independent of the pre-emphasis settings:
 - Bandwidth limitation not in the output node
 - Either in an internal or input node
- Once the modelling problem was detected:
 - Simulations accurately reproduce the response
 - Input identified as the BW limiting node
- "RC" time constant of the source impedance plus ESD protection capacitance dominated the response!
 - An input matching network was clearly needed!

Paulo.Moreira@cern.ch

ESD PROTECTION CIRCUITS Introduction

What is ESD Protection?

- Electrostatic Discharge (ESD) event!
- ESD events occur during:
 - Handling by humans:
 - Human Body Model (HBM)
 - Handling by machines:
 - Machine Model (MM)
 - Charged Device Model (CDM)
- All pins must have ESD protection!
- Including:
 - High speed
 - Sensitive analog
- Failing to protect against ESD will most likely result in poor yield
- ESD protection must be included early in the design phase:
 - Its impact on circuit performance must be considered

ESD Models

Characteristics	НВМ	ММ	CDM
Equivalent circuit	Series 1.5 k Ω + 100 pF	Series 0.5-1.0 μH + 200 pF	Field plate to chip capacitance only
Test voltage	2000 V	200 V	500 V
Discharge Path	Between ANY two pins	Between ANY two pins	One pin only (Discharge Pin)
Simulates	Human discharging through chip	Metal tool discharging through the chip	Charged chip discharging to ground
Discharge Waveform	Exponential Decay Time Constant = 150 ns	11-16 MHz damped Oscillation	~1 GHz damped Oscillation
On-Chip stress characteristics	Lowest Current and Voltage, longest duration I(HBM)=V(HBM)/1.5 kΩ	Intermediate Current, Voltage and duration	Highest Current, Voltage and shortest duration
Failure Mechanisms	Thermal failures: MOSFET snapback, Interconnect fusing, gate oxide damage	Junction damage, Interconnect fusing, gate oxide damage	Gate oxide damage and interconnect damage

ESD Protection Circuits

- ESD voltages can exceed the breakdown voltage of any structure on the ASIC
- The current will flow through the path(s) of least resistance
- ESD protection provides a preferred discharge current path designed to carry high currents
- The discharge path must carry a high current while developing a low voltage drop or the current will be re-routed through sensitive circuits
- To be effective (low impedance) diodes have to have relatively large areas and thus relatively large capacitances:
 - Example of HBM protection diodes:
 - 2 x 50 µm long, 0.72 µm wide diodes to ground
 - 4 x 50 µm long, 0.72 µm wide diodes to supply
 - Equivalent parasitic capacitance: ~400 fF

Why Does it Matter?

- For multi Gb/s systems the wave propagation nature of electrical signals needs to be considered!
- Waves travel along transmission lines and are partially reflected at points where the characteristic impedance changes:
 - Transmission lines are intrinsically bidirectional
 - The important quantity is power (and not voltage and current independently)!
- Waves are fully absorbed (no reflection) at the termination if the termination has the same impedance of the line!
- Otherwise, waves are partially reflected:
 - $\Phi = 0^{\circ}$ if $R_{\text{TERM}} > Z_0$
 - Φ = 180° if R_{TERM} < Z₀

Why Does it Matter?

- For purposes of signal propagation, the ESD circuit can be seen as a capacitor shorting the termination impedance
- The transmission line termination is thus frequency dependent and can't match the line impedance at all frequencies
- The incoming wave will be partially reflected over a range of frequencies
- The ratio between the reflected and incident wave amplitudes is the reflection coefficient:

$$\Gamma = \frac{V_r}{V_i} \tag{1}$$

• The reflection coefficient is related with the impedance of the line and of termination:

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}$$
[2]

• Or to the return loss (the ratio between the incident and reflected powers)

$$RL(dB) = -20\log|\Gamma| = 10\log\frac{P_i}{P_r}$$
[3]

- The higher the return loss the better the load is matched to the source!
 - The name choice was unfortunate!

Why Does it Matter?

- Example:
 - Signal frequency: 5 GHz
 - 50 Ω transmission line
 - Terminated by a 50 Ω resistor "shorted" by 1 pF parasitic capacitance
 - Capacitor impedance at 5 GHz:
 - 31.8 Ω
 - Termination impedance at 5 GHz (parallel of R and C):
 - 19.4 Ω
 - Reflection coefficient at 5 GHz:
 - - 0.44

(we are ignoring here that these are all complex numbers)

- The reflected wave has 44% of the amplitude of the incident wave and an 180° phase shift!
- Return loss at 5 GHz:
 - 7.13 dB
 - 19.3% of the incident power is reflected towards the load.

A Real Example

- The on-chip termination resistor is in parallel with:
 - A relatively large capacitance originating from the ESD devices
 - The input stage capacitance
- The ESD capacitance becomes a short at high frequencies
- The return loss does not fulfil the specification (> 16 dB)
- Add a matching network to improve the return loss
- Two methods will be discussed:
 - 1. Coupled T-Coils
 - 2. "Inductive compensation"

ESD PROTECTION CIRCUITS

Input Matching: Coupled T-Coils

Load C_{ESD} "Compensation"

S. Galal and B. Razavi - JSSC vol. 38, no. 12, p. 2334, Dec. 2003

Paulo.Moreira@cern.ch

The T-coil Concept

- At very low frequencies:
 - $Z_{in} = R_T$ because the inductors act as a short and the capacitors are "open"
- At very high frequencies:
 - $Z_{in} = R_T$ because C_B acts as a short and the inductors are "open"
- Z_{in} = R_T can be guaranteed for all intermediate frequencies by properly choosing:
 L₁, L₂, k and C_B,.
- In this case, C_{in} (including the ESD capacitance) never influences the overall input impedance so that the return loss ideally is infinite.

T-Coil Input Impedance (1/2)

T-Coil Input Impedance (2/2)

$$Z_{in} = R_T \Leftrightarrow \begin{cases} L_1 = L_2 \\ L_1 = \frac{R_T C_{in}}{2(1+k)} & \rightarrow \text{ choose } L_1 \text{ or } k \\ C_B = \frac{C_{in}}{4} \frac{1-k^2}{(1+k)^2} \end{cases}$$

Paulo.Moreira@cern.ch

T-Coil Transfer Function

 $\zeta = 0.7$ for maximum bandwidth $\zeta = \frac{\sqrt{3}}{2} \approx 0.866$ for uniform group delay

T-Coil Implementation

- Coupled inductors are implemented by means of 'symmetrical inductors' provided by the design kit
- Coupling factor is adjusted by choosing an appropriate spacing between the turns
- Modeling:
 - Design kit parameterized models
 - LRCK extraction over the inductor region
- Symmetrical inductor:
 - outer diameter: 173 μm
 - coil width: 8.5 µm
 - 3 turns
 - spacing: 5 µm
- Minimal HBM ESD protection is used to keep the input bandwidth high
- Input:
 - Differential 100 Ω terminated
 - Termination implemented by two 50 Ω resistors in series with the mid point to the common-mode voltage

Design parameters		
R _T	50 Ω	
C _{IN}	621 fF	
L ₁	545 pH	
L ₂	545 pH	
k	0.44	
C _B	63.2 fF	
Input Network Layout

Return Loss Calculation (1/2)

Specification:

- RL > 16 dB
- 0 < f < 5 GHz

RL = 16 dB:

- 2.5% of the power is reflected
- Reflected wave has an amplitude which is 15.8% of the incident wave.

- The return loss specifications can be met with "insertion" of a T-coil.
- The actual value of the coupling factor is not really important as long as the other parameters are changed accordingly.

Return Loss Simulation

"Locally" RLCK extraction

Input Transfer Function Simulation

- The input gain (transfer function from the source to the input gates) is smaller with a T-coil (12 GHz vs. 7 GHz)
- However, for the 5 Gbit/s intended data rate, 7 GHz is more than enough.

Eye Diagrams with an Ideal Source

Ideal source and ideal T-line \rightarrow No reflection from the source \rightarrow No advantage in having a T-coil at the input

Eye Diagrams with Non-Ideal Source

100 Ω source and ideal T-line \rightarrow significant reflection from the source \rightarrow T-coil reduces the effect of these reflection at the input gates

Measurement Results

Measurement Results

Compared with a Commercial Device on the VTRx

ESD PROTECTION CIRCUITS

Input Matching: Inductive Compensation

130 nm Process "Flavours"

Inductor Model

- For the same inductance :
 - C_{ox1} and C_{ox2} are ± 3 times larger in LM than in DM
 - Lower self-resonant frequency
- BUT:
 - High-resistivity substrate (± 1.5 Ω ·cm)
 - Large R_{si1}/R_{si2} and small C_{si1}/C_{si2}
 - So, self-resonant frequency is not much lower

LM versus DM Inductors

- Higher DC resistance for the LM inductor:
 - Can be mitigated by reducing the load resistance slightly
- Comparable behavior in the range 1 GHz 8 GHz
 - The region of interest
- Higher self-resonant frequency for DM inductors (above 10 GHz)

Input Stage Input Impedance Modeling

- Because of the inductive loading and the Miller effect, the input impedance of the input stage is not purely capacitive.
- Between DC and 10 GHz, it can be reliably modeled by a C-R-C network:

35.8 fF

25.6 fF

1.51 kΩ

Return Loss Improvement with a Single Inductor

C _p	343 fF	Parasitic capacitance of the package
L _p	750 pH	Bondwire inductance
C _{pad}	75 fF	Capacitance of the bondpad
R _t	50 Ω	On-chip termination resistance
C _{esd}	378 fF	Capacitance of the ESD devices
C _{in1}	35.8 fF	Ad-hoc model for the input impedance of the input stage of the modulator
C _{in2}	25.6 fF	
R _{in}	1.51 kΩ	
L _c	?	Compensation inductor to improve the matching

Determining the Compensation Inductance

Calculations

- By "tuning" the inductor the return loss can be optimized over the frequency range of interest
- The return loss specification is met with 0.6 nH $\leq L_c \leq 1$ nH

Accounting for the Bondwire Inductance Spread

- The bondwire inductance "is also part" of the compensation network
- The value of the bondwire inductance is not well defined!
 - It can be obtained from the package model
 - But a large variation has to be assumed to account for the difference between the package cavity size and the chip size
 - Additionally, variations from the bonding process are expected
 - A range of 0.5 to 1.0 nH was assumed (nominal 0.75 nH)
- A 0.8 nH compensation inductance is OK for 'all' bondwire inductances considered
- But ...

Accounting for the Termination Resistor Spread

- Poly resistors (used for R_T) have a 3 σ spread of 15-20%
 - Return loss at DC can get as low as 19 dB
- In **extreme cases**, this resistor variation could push the return loss below 16 dB for frequencies above 5.5 GHz and thus violating the return loss specification
- In order to comply to the return loss specification, the compensation inductance has been decreased slightly to **0.62 nH** so that return loss at lower frequencies is traded with return loss at higher frequencies, giving a flatter overall behaviour.

Input Bandwidth

Input bandwidth always above 9 GHz (7 GHz in GBLD v4)

Eye Diagrams

RLCK extracted

- Measured at the input stage inputs
- 50 Ω T-line of 10 cm
- 40 Ω source impedance

Input Network Schematic

Input Network Layout

CONNECTORS PCB & PACKAGE

Reaching the ASIC

"Build" Models

Fully Model the Signal Path

Unpopulated Board

Measurement (yellow) and simulation (blue) with 100 ohms termination at the BGA pads

Fully Populated Board

Probe is at the receiver termination , \approx 3.5 mm from the input buffer. Measurement (yellow) and Simulation (Brown).

Checking the Models

Schrodinger In High Frequency Electronics!?

- Can signals be observed without being disturbed?
- Manufacturers provide equivalent electrical modes for their oscilloscope probes
- Simulate to evaluate how much the system is being disturbed
- In our case the loading effect of the probe was small!

With Probe (gray)

No Probe (blue)

"Virtual Probe" - Simulation

Improving the Package

LASER DRIVER DESIGN

LASER-Diodes in HEP

GBLD – Giga Bit Laser Driver

Main specs:

- Bit rate 5 Gb/s (min)
- Modulation:
 - Current sink
 - Single-ended/differential
- Laser modulation current:
 - 2 to 12 mA
- Laser bias:
 - 2 to 43 mA
- "Equalization"
 - Pre-emphasis/de-emphasis
 - Independently programmable for rising/falling edges
- Input return loss
 - > 16 dB for f < 5 GHz</p>
- Supply voltage: 2.5 V
- Die size: 2 mm × 2 mm
- I2C programming interface

GBLD Architecture

Pre- De-Emphasis (1/5)

- To transmit NRZ data with little ISI the transmission channel must have a bandwidth of at least (rule of thumb):
 - BW = $0.7 \times Bit Rate$
- For example, for transmission at 5 Gb/s the bandwidth required is:
 - BW = 0.7 × 5 Gb/s = 3.5 GHz
- For illustration purposes lets suppose that:
 - The laser driver is modelled by an ideal current source
 - And the circuit driven by the laser driver is modelled by a RC network with 3.5 GHz bandwidth:
 - R = 50 Ω
 - C = 0.91 pF
- Simulated eye-diagram:
 - There is very little ISI:
 - The eye is well opened vertically and horizontally
 - The jitter is very low

Pre- De-Emphasis (2/5)

- Lets suppose now that the bandwidth of the circuit being driven is four times lower:
 - BW = 3.5 GHz / 4 = 795 MHz
 - R = 50 Ω
 - C = 3.64 pF
- Simulated eye-diagram
 - There are significant amounts of ISI:
 - A "bit" extends for much longer than a bit period
 - The eye-diagram is almost closed vertically and horizontally
 - Jitter is high
 - The BER would be "prohibitive" for such a system!

Pre- De-Emphasis (3/5)

- The problem with the low bandwidth is that:
 - For fast successions of "0s" and "1s" the signal has no time to reach the final value before a new "0" or a new "1" is transmitted.
- In an RC type of circuit this can be "easily" overcome:
 - At every "0"-t-"1" or "1"-to-"0" transition drive the circuit to a higher (or lower) voltage than the final one:
 - In our case this is accomplished by using a larger current than the final one
 - Once the voltage reaches the desired amplitude switch to the final current.
- In practice, no level crossing detection is made:
 - Immediately after a transition and for a "short" time a current pulse is added to the "normal" modulation current

Pre- De-Emphasis (4/5)

Ecole IN2P3 de microélectronique

Paulo.Moreira@cern.ch

Pre- De-Emphasis (5/5)

Delay Line

AND Gate

Only if (inA + > inA -) & (inB + > inB -) is out + > out-

Paulo.Moreira@cern.ch

Pre-Driver & Driver

Emphasis / De-Emphasis Drivers

Avoid Parasitic Capacitances in the Signal Path

PIN – RECEIVER DESIGN

PIN-Diodes In HEP

GBTIA – Giga Bit Transimpedance Amplifier

Main specs:

- Bit rate:
 - 5 Gb/s (min)
- Sensitivity:
 - 20 μA P-P (10⁻¹² BER)
- Total jitter:
 - < 40 ps P-P
- Input overload:
 - 1.6 mA (max)
- Dark current:
 - 0 to 1 mA
- Supply voltage:
 - 2.5 V
- Power consumption:
 - 250 mW
- Die size:
 - 0.75 mm \times 1.25 mm

GBTIA Design Overview

- Integrating the TIA with the LA is potentially risky:
 - Single ASIC
 - Crosstalk noise trough the supply and substrate
- Fully differential architecture:
 - Good tolerance to the supply noise
 - Input noise larger than for single ended
 - The power consumption is higher
- The photodiode is AC coupled to the TIA
 - Dark current deviated from the TIA
 - Low value of the low cut off frequency
 - Parasitics of the integrated coupling capacitances limit the bandwidth
- Transimpedance amplifier (TIA)
 - Wide bandwidth
 - Moderate noise
 - Stability
- Limiting Amplifier and output buffer (LA)
 - High gain
 - Wide bandwidth
 - Offset compensation
- Additional features :
 - Internal voltage regulator (with enable/disable control)
 - Average power indicator

GBTIA Architecture

Transimpedance Amplifier

- Shunt feedback amplifier is widely used for high speed receiver designs
- To increase the bandwidth :
 - Decrease the feedback resistor
 - Increase the amplifier open loop gain
 - Decrease the input node capacitance
- To minimize the thermal noise :
 - Increase the feedback resistor
 - Decrease the input node capacitance
 - Increase the amplifier transconductance

$$Z_T = \frac{v_{out}}{i_{in}} = \frac{-A_V}{A_V + 1} \frac{R_F}{1 + j\omega C_T \frac{R_F}{1 + A_V}}$$
$$BW = \frac{1 + |A_V|}{2\pi R_F C_T}$$

$$i_{n,in}^{2} = \frac{4kT}{R_{F}} + \frac{4kT\Gamma}{R_{F}^{2}} \left(\frac{1}{g_{m}} + \frac{(2\pi f \cdot R_{F}C_{T})^{2}}{g_{m}}\right)$$

Bandwidth Enhancement by Inductive Peaking

- In order to maintain a low level of noise while keeping a large bandwidth, shunt peaking is used to bust the open loop gain at high frequencies
- Shunt peaking
 - Inductance in series with the load resistance
 - Enhances the bandwidth
 - The frequency response is characterized by the ratio "m"

$$L = m.R^2.C$$

Factor m	Normalized f _{3dB}	Response
0	1.00	No shunt peaking
0.32	1.60	Optimum group delay
0.41	1.72	Maximally flat
0.71	1.85	Maximum bandwidth

GBTIA Input Stage

- Differential
- Inductive peaking
 - The target bandwidth of 3.5 GHz is achieved for the worst case PVT (simulations including parasitic)
 - High transimpedance gain (R_F =380 Ω)
 - Low level of input referred noise
- Cascode
 - Reduces the Miller effect
- Current density is optimized
 - High current density needed to achieve high cut off frequency for the input transistor
 - Input transistor size optimized for an input capacitance of 700 fF
- 2 V supply required

Limiting Amplifier Requirements

- Considering the sensitivity and the gain of the TIA preamplifier:
 - In the sensitivity limit the TIA output voltage is 12 mV
 - The next ASIC requires a 400 mV pp input
 - The LA must provide a gain of 40 dB (28 dB in worst-case scenario)
 - The minimum overall bandwidth is 3.5 GHz
 - The noise contribution must be negligible :
 - The input referred noise must be lower than 850 µV RMS (12mV/14) for a BER of 10E-12
- The input capacitance of the LA must be sufficiently low so that it does not reduce the TIA bandwidth
- The number of stages is set to 5 (4 LA + a buffer)
- Offset cancellation is incorporated in LA block to prevent the mismatch in the differential amp from saturating the amplifier and "mask" the small input signals
- In order to maintain a wide bandwidth while delivering a large current to the load, the amplifiers stages in the LA are designed to have increasingly larger size and current:
 - Minimize the load capacitance seen by the previous stage
 - Allow bandwidth extension
- The gain of the first stage (LA1) is higher than the following stages to reduce its noise contribution.

Limiting Amplifier Stage

High bandwidth topology for each stage

- Cherry and Hooper structure
- A g_m stage followed by shuntfeedback stage
- Second stage uses active "inductors"
- By active inductive peaking, the bandwidth is increased by 34% over a resistive loaded topology.

Pin-Diode Biasing (1/2)

- TID effects result in large DC leakage currents across the PDs:
 - Can be as high as 1 mA!
- A large leakage current causes the PD bias voltage to decrease due to voltage drops in the biasing circuit!
- For high sensitivity and high bandwidth operation it is necessary to keep the reverse biasing voltage across the PD above a minimum:
 - 0.7 V for the devices used
- High receiver sensitivity also requires the impedance of the biasing circuit to be high, so that the signal current flows through the TIA and not the bias circuit
- The last two requirement are incompatible if simple bias resistors are used!
- To overcome the problem two "adaptive" current sources were used to bias the PD
- In the presence of relatively high leakage currents the circuit:
 - Maintains a "high" bias voltage
 - Represents a "high" impedance to the signal

Pin-Diode Biasing (2/2)

- The bias circuit is capable of maintaining a "high" bias voltage:
 - across a large range of leakage currents (up to 1 mA)
- While being high impedance
- And having a low-band cut-off frequency:
 - Below 3 MHz in the worst case.
- A low cut-off frequency is required to avoid DC wander which will close the eye-diagram at the input of the receiver degrading the receiver sensitivity.
- For the codes used (8B/10B and 21-bit linear shift register scrambling) there is no penalty at 5Gb/s:
 - the low cut-off frequency of 3 MHz is a good compromise

Paulo.Moreira@cern.ch

GBTIA

Measured Eye-Diagram

- Photodiode:
 - Responsitivity: 0.9 A/W @ λ = 1310 nm
 - Active area diameter: 60 μm
 - Illuminated on the top
 - Typical equivalent capacitance of 240 fF.
- The chip is wire-bonded to the photodiode:
 - To minimize the wire bond inductance and the input parasitic capacitance, the connection between the TIA and the photodiode is made very short and does not exceed 200 µm
- The eye diagram was measured at 5 Gb/s using a PRBS sequence of length 2⁷-1
- For a –6 dBm input, the rise time is 30 ps and the total jitter is below 0.15 UI (30 ps) for a Bit Error Rate (BER) of 10⁻¹²
- For –18 dBm input, the jitter is less than 0.55 UI (110 ps) and the rise time is 60 ps
- The output amplitude is virtually independent of the input power:
 - 800 mV differential

Influence of the optical DC level on the BER

- The PD dark current can increase to 1 mA after 200 Mrad TID irradiation.
- To measure the influence the dark current, the PD was additional illuminated by a "DC" laser source.
- The integrated biasing circuit ensures a sufficient voltage across the PD.
- No noticeable degradation of the BER resulting from a higher low cut-off frequency was observed.
- However, the sensitivity degrades due to shot noise generated by the PD DC current.
 - The power penalty introduced by the shot noise of the DC level is ≈4 dB as expected

BER versus Total Dose

- Only the optical receiver chip (without the PD) was irradiated
- The PD was replaced by a passive network with input capacitance 500 fF.
- The chip was irradiated to a dose of up to 200 Mrad
- Only a marginal variation of the BER is observed

Eye-Diagram versus Total Dose

GBTIA: SEUs

- The Bit Error Rate, was measured to be independent of the bit rate
- Test flux:
 - 2 × 10⁸ p/cm²/s
- Error rates < 10⁻⁹ can't be achieved even at high input optical power
- Forward error correction is thus mandatory

- SEU induced error "bursts" in the TIA
 - Biggest majority single or double bit errors
 - Longest observer 5 bits (SEU dominated region)

GBTIA vs Commercial PIN-Receiver (1/2)

Same PIN type in the tree cases

GBTIA vs Commercial PIN-Receiver (2/2)

ASSEMBLING ASICS

The GBTX in Numbers

- ¹/₂ million gates
- Approximately:
 - 300 8-bit programmable registers (all TMR)
 - 300 8-bit e-Fuse memory
- Clock tree (chip wide):
 - 9 clock trees (all TMR)
 - Frequencies: 40/80/160/320 MHz
- 7 PLLs:
 - RX: CDR PLL + Reference PLL (2.4 GHz)
 - Serializer PLL (4.8 GHz)
 - Phase-Shifter PLL (1.28 GHz)
 - xPLL (VCXO based PLL, 80 MHz)
 - (2x) ePLL (320 MHz)
- 17 master DLLs:
 - 8 for phase alignment of the e-links
 - 8 for clock de-skewing
- 40 replica delay lines:
 - For phase alignment of the e-links
- 7 power domains:
 - Serializer (1.5V)
 - DESerializer (1.5V)
 - Clock Manager (1.5V)
 - Phase shifter (1.5V)
 - Core digital (1.5V)
 - I/O (1.5V)
 - Fuses (3.3V)

GBTX – Floor Plan and Modelling

DESerializer

"ANALOGUE-VERILOG"

PLL Modeling with (Plain) Verilog

Phase Detector and VCO

Phase Frequency Detector			<pre>`timescale 1 fs / 1 fs module VCO(delay_control, vco_output); input[31:0] delay_control:</pre>		vco		
`timescale 1 fs / 1 fs			output vco_ou	itput;			
module ThreeStatePD (down, up, r, v);			reg reset;				
output input	down, up; r, v;	// Early signal// Late signal// Reference input// VCO input	initial begin reset=1, #10000 reset=0, end	; D; ;			
wire	r, v, reset;		delay1(.in	(~vco_output & ~reset), .delay_control(delay_contr	ol),		
reg initial always @ (po	up, down; begin up = 0; down = 0; end osedge r)		.out(tap1)), delay2(.in(tap1),.delay_control(delay_control),.out(tap2)), delay3(.in(tap2),.delay_control(delay_control),.out(tap3)), delay4(.in(tap3),.delay_control(delay_control),.out(vco_output)); endmodule //// `timescale 1 fs / 1 fs				
up <= #1 1'b1;		input	in;				
always @ (posedge v) down <= #1 1'b1;		input[31:0] output	delay_control; out;				
always @ (posedge reset) begin up <= #1 1'b0; down <= #1 1'b0; end		reg out; initial out = 1'b0; always @(in)					
assign #1			out <= #(delay_control/8) in; // delay = delay_control/(2*number_of_delay_cells);				
endmodule		endmodule	end				

Ecole IN2P3 de microélectronique

Loop Filter Simulation: R-C filter

- Simulation step: $t_n = t_{n-1} + \Delta t$
- The current I(t)

•

•

•

- It is "imposed" on the circuit (it is the independent variable)
- It is controlled by the phase-detector output
- For accuracy the time advances in small increments Δt :
 - Capacitor voltages change very little during a simulation step
 - The time integral of a function in the interval t_{n-1} to t_n can be approximated by:

$$\int_{t_{n-1}}^{t_n} f(t) dt = f(t_{n-1}) \cdot \Delta t \quad [1]$$

For the simple R-C filter:

$$V_{cap}(t_n) = V_{cap}(t_{n-1}) + \frac{1}{C} \int_{t_{n-1}}^{t_n} I(t) dt$$
 [2]

$$V_{control}(t_n) = R \cdot I(t_n) + V_{cap}(t_n)$$
 [3]

Simulation equations:

$$\left| V_{cap}(t_n) \cong V_{cap}(t_{n-1}) + \frac{1}{C} \cdot I(t_{n-1}) \cdot \Delta t \right| \quad [4]$$

$$V_{control}(t_n) = R \cdot I(t_n) + V_{cap}(t_n)$$
^[5]

Notice that the time increments don't need to be constant (they have to be small). In that case, replace in the equation Δt by: $\Delta t_n = t_n - t_{n-1}$

$$\frac{T_{vco}}{100} \le \Delta t \le \frac{T_{vco}}{10}$$
Typically

Ecole IN2P3 de microélectronique

Paulo.Moreira@cern.ch

Charge Pump & Loop Filter

Charge-Pump (includes the loop filter)

`timescale 1 fs / 1 fs									
module ChargePump(up, down, delay_control);									
`define DeltaVProportional (`Icp * `Rfilt)/1.0E-3 // PLL proportional term (in mV) `define DeltaVIntegral (`Tref * `Icp / `Cfilt)/1.0E-3 // PLL integral term (in mV)									
Variables used in 'analogue' computations declared as real									
initial	dv_capacitor, control_voltage, frequency, period, integral_term, direct_term; begin	 // Differential capacitor voltage (in mV) // Integral plus proportional control voltage (in mV) // VCO frequency (in GHz) // VCO period (in ns) // loop control integral term (in mV) // loop control proportional term (in mV) 							
· · · · · · · · · · · · · · · · · · ·	integral_term = `DeltaVIntegral/`IntegrationPoints; direct_term = `DeltaVProportional; integral_evaluation_time = 25000000/`IntegrationPoints; end								

Simulation Example

HANDLING SEUs

SEUs on Analogue

- In principle, Functional Interrupts (if they are self recovery) in analogue circuits have little consequence overall for a frontend ASIC or a data acquisition system:
 - What do they mean, for example, for an analogue signal representing the charge deposition of a particle?
 - What are the consequences for the overall system of an occasional wrong reading?
- However some SEUs on critical Analogue circuits might be important:
 - For example if a (global) bias circuit is disturbed and returning to the quiescent point takes a significant amount of time this might result on a functional interrupt that lasts long enough to affect the overall system performance!

- There is no universal answer:
 - 1st Make an estimate of how much charge will be typically deposited by radiation
 - 2nd Try to evaluate (realistically) what are the consequences for the full system (not just the circuit in question)
 - 3rd If it is important to make the circuit SEU robust:
 - Choose an appropriate solution
 - Evaluate the consequences for the system and the circuit
- Two generic approaches are often used in critical analogue circuits:
 - For slow circuits like e.g. bias circuits, "artificially" increase the capacitance of the sensitive nodes:
 - This will reduce the voltage disturbance due to the injected charge
 - Recovery might be slow so it important that the voltage disturbance is small
 - For fast circuits ("artificial") increase the bias currents (an thus the transistor sizes) so that the injected current represents a small fraction of the charge already "stored" in the circuit:
 - This results in additional power consumption

Example: SEUs in VCOs

- In data transmission systems, SEUs in VCOs are critical:
 - After recovery synchronization is required at the transmitter and/or receiver easily leading to system dead times of the order of the milliseconds!
- Depending on the injected charge, an SEU can:
 - Induce a phase jump
 - Stop the VCO oscillation for a few cycles!
- Example:
 - Technology: 130 nm CMOS
 - Oscillation frequency: 5 GHz
 - Differential delay-cell ring oscillator
 - SEUs modelled by current pulses injecting 300 fC in 10 ps
- Design criteria:
 - The VCO tail current is set so that an SEU causes a phase jump smaller than 10% of the bit period
 - For the PLL this "resembles" like a bit of excess jitter and can be easily handled
- Penalty:
 - High power consumption

SEUs in Digital Circuits

- Over the years an extensive set of techniques have been developed to protect against SEUs in digital circuits that offer different levels of robustness:
 - One-hot encoded state machine:
 - Monitored by a "watchdog" circuit
 - Dice-cell flip-flops:
 - Depending on the protection level required, it might also need to be monitored
 - Hamming encoding
 - Triple Modular redundancy:
 - Triple voted registers
 - Triple voted registers with triplicated combinatorial logic
 - Triple voted registers with triplicated combinatorial logic and triplicated clock tree
 - ...
 - Plus what your imagination can came up with...
- Depending how critical SEU induced errors are systems might require only protection of the state machines and/or the data path
- As for the analogue circuits not all digital circuits need the same level of protection:
 - Evaluate which circuits and to which level they need to be protected
 - In digital, SEU robustness is paid in terms of silicon area, power consumption, simulation and testing complexity!

Fast TMR Flip-Flops

- Clock dividers in high data rate SERDES circuits typically run at the highest possible speeds in a given technology:
 - They are based on fast flip-flops
- Dynamic flip-flops are intrinsically faster than static flip-flops enabling very high data rates
- However, they are even more sensitive to SEUs than static flip-flops
- It is them mandatory to use TMR techniques to protect the dynamic flip-flops from being upset:
 - E.g. a wrong count sequence can unlock a PLL resulting in a long dead time
- Triple voting adds additional delay in a circuit reducing the operation speed
- However, in dynamic FFs it is possible to vote an internal node:
 - This results in a much smaller speed penalty than if the voting would take place before or at the input stage of the flip-flop

Туре	Unprotected	Single voter TMR	Tripple voter TMR	Proposed
Static	1.0	0.9	0.8	-
Dynamic	1.9	1.4	1.1	1.6

Only a small speed penalty, 1.6 x faster than a static FF

Paulo.Moreira@cern.ch

SEUs: Don't Forget the Clock Tree

SEU Recovery in Clock Gated Registers

Paulo.Moreira@cern.ch